Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16380, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013939

RESUMO

Bioimpedance spectrum (BIS) measurements have a great future in in vitro experiments, meeting all the requirements for non-destructive and label-free methods. Nevertheless, a real basic research can provide the necessary milestones to achieve the success of the method. In this paper a self-developed technology-based approach for in vitro assays is proposed. Authors invented a special graphene-based measuring plate in order to assess the high sensitivity and reproducibility of introduced technique. The design of the self-produced BIS plates maximizes the detection capacity of qualitative changes in cell culture and it is robust against physical effects and artifacts. The plates do not influence the viability and proliferation, however the results are robust, stable and reproducible regardless of when and where the experiments are carried out. In this study, physiological saline concentrations, two cancer and stem cell lines were utilized. All the results were statistically tested and confirmed. The findings of the assays show, that the introduced BIS technology is appropriate to be used in vitro experiments with high efficacy. The experimental results demonstrate high correlation values across the replicates, and the model parameters suggested that the characteristic differences among the various cell lines can be detected using appropriate hypothesis tests.


Assuntos
Impedância Elétrica , Humanos , Reprodutibilidade dos Testes , Grafite/química , Linhagem Celular Tumoral , Sobrevivência Celular , Espectroscopia Dielétrica/métodos , Proliferação de Células
2.
Biomedicines ; 11(9)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37760890

RESUMO

Based on a prior university patent, the authors developed a novel type of bioimpedance-based test method to noninvasively detect nonalcoholic fatty liver disease (NAFLD). The development of a new potential NAFLD diagnostic procedure may help to understand the underlying mechanisms between NAFLD and severe liver diseases with a painless and easy-to-use paraclinical examination method, including the additional function to detect even the earlier stages of liver disease. The aim of this study is to present new results and the experiences gathered in relation to NAFLD progress during animal model and human clinical trials.

3.
Sensors (Basel) ; 20(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825145

RESUMO

Accurate and reliable measurement of the electrical impedance spectrum is an essential requirement in order to draw relevant conclusions in many fields and a variety of applications; in particular, for biological processes. Even in the state-of-the-art methods developed for this purpose, the accuracy and efficacy of impedance measurements are reduced in biological systems, due to the regular occurrence of parameters causing measurement errors such as residual impedance, parasitic capacitance, generator anomalies, and so on. Recent observations have reported the necessity of decreasing such inaccuracies whenever measurements are performed in the ultra-low frequency range, as the above-mentioned errors are almost entirely absent in such cases. The current research work proposes a method which can reject the anomalies listed above when measuring in the ultra-low frequency range, facilitating data collection at the same time. To demonstrate our hypothesis, originating from the consideration of the determinant role of the measuring frequency, a physical model is proposed to examine the effectiveness of our method by measuring across the commonly used vs. ultra-low frequency ranges. Validation measurements reflect that the range of frequencies and the accuracy is much greater than in state-of-the-art methods. Using the proposed new impedance examination technique, biological system characterization can be carried out more accurately.


Assuntos
Impedância Elétrica , Capacitância Elétrica
4.
Heliyon ; 6(4): e03760, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32346631

RESUMO

A central goal of systems neuroscience is to simultaneously measure the activities of all achievable neurons in the brain at millisecond resolution in freely moving animals. This paper describes a protocol converter which is part of a measurement acquisition system for multichannel real time recording of brain signals. In practice, in such techniques, a primary consideration of reliability leads to great necessity towards increasing the sampling rate of these signals while simultaneously increasing the resolution of A/D conversion to 24 bits or even to the unprecedented 32 bits per sample. In fact, this was the guiding principle for our team in the present study. By increasing the temporal and amplitude resolution, it is supposed that we get enabled to discover or recognize and identify new signal components which have previously been masked at a "low" temporal and amplitude resolution, and these new signal components, in the future, are likely to contribute to a deeper understanding of the workings of the brain.

5.
J Vis ; 20(4): 3, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271895

RESUMO

Dynamic random dot stereograms (DRDSs) and correlograms (DRDCs) are cyclopean stimuli containing binocular depth cues that are ideally, invisible by one eye alone. Thus, they are important tools in assessing stereoscopic function in experimental or ophthalmological diagnostic settings. However, widely used filter-based three-dimensional display technologies often cannot guarantee complete separation of the images intended for the two eyes. Without proper calibration, this may result in unwanted monocular cues in DRDSs and DRDCs, which may bias scientific or diagnostic results. Here, we use a simple mathematical model describing the relationship of digital video values and average luminance and dot contrast in the two eyes. We present an optimization algorithm that provides the set of digital video values that achieve minimal crosstalk at user-defined average luminance and dot contrast for both eyes based on photometric characteristics of a given display. We demonstrated in a psychophysical experiment with color normal participants that this solution is optimal because monocular cues were not detectable at either the calculated or the experimentally measured optima. We also explored the error by which a range of luminance and contrast combinations can be implemented. Although we used a specific monitor and red-green glasses as an example, our method can be easily applied for other filter based three-dimensional systems. This approach is useful for designing psychophysical experiments using cyclopean stimuli for a specific display.


Assuntos
Sinais (Psicologia) , Percepção de Profundidade/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Visão Monocular/fisiologia , Calibragem , Sensibilidades de Contraste/fisiologia , Feminino , Humanos , Imageamento Tridimensional , Luz , Masculino , Psicofísica , Visão Binocular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...