Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Legal Med ; 138(2): 627-637, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37934208

RESUMO

Forensic entomological evidence is employed to estimate minimum postmortem interval (PMImin), location, and identification of fly samples or human remains. Traditional forensic DNA analysis (i.e., STR, mitochondrial DNA) has been used for human identification from the larval gut contents. Forensic DNA phenotyping (FDP), predicting human appearance from DNA-based crime scene evidence, has become an established approach in forensic genetics in the past years. In this study, we aimed to recover human DNA from Lucilia sericata (Meigen 1826) (Diptera: Calliphoridae) gut contents and predict the eye and hair color of individuals using the HIrisPlex system. Lucilia sericata larvae and reference blood samples were collected from 30 human volunteers who were under maggot debridement therapy. The human DNA was extracted from the crop contents and quantified. HIrisPlex multiplex analysis was performed using the SNaPshot minisequencing procedure. The HIrisPlex online tool was used to assess the prediction of the eye and hair color of the larval and reference samples. We successfully genotyped 25 out of 30 larval samples, and the most SNP genotypes (87.13%) matched those of reference samples, though some alleles were dropped out, producing partial profiles. The prediction of the eye colors was accurate in 17 out of 25 larval samples, and only one sample was misclassified. Fourteen out of 25 larval samples were correctly predicted for hair color, and eight were misclassified. This study shows that SNP analysis of L. sericata gut contents can be used to predict eye and hair color of a corpse.


Assuntos
Dípteros , Cor de Cabelo , Animais , Humanos , Larva/genética , Dípteros/genética , Genótipo , DNA Mitocondrial/genética , Cor de Olho/genética
2.
Genes (Basel) ; 13(11)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36421769

RESUMO

Forensic DNA Phenotyping (FDP) can reveal the appearance of an unknown individual by predicting the ancestry, phenotype (i.e., hair, eye, skin color), and age from DNA obtained at the crime scene. The HIrisPlex system has been developed to simultaneously predict eye and hair color. However, the prediction accuracy of the system needs to be assessed for the tested population before implementing FDP in casework. In this study, we evaluated the performance of the HIrisPlex system on 149 individuals from the Turkish population. We applied the single-based extension (SNaPshot chemistry) method and used the HIrisPlex online tool to test the prediction of the eye and hair colors. The accuracy of the HIrisPlex system was assessed through the calculation of the area under the receiver characteristic operating curves (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The results showed that the proposed method successfully predicted the eye and hair color, especially for blue (100%) and brown (95.60%) eye and black (95.23) and brown (98.94) hair colors. As observed in previous studies, the system failed to predict intermediate eye color, representing 25% in our cohort. The majority of incorrect predictions were observed for blond hair color (40.7%). Previous HIrisPlex studies have also noted difficulties with these phenotypes. Our study shows that the HIrisPlex system can be applied to forensic casework in Turkey with careful interpretation of the data, particularly intermediate eye color and blond hair color.


Assuntos
Cor de Cabelo , Polimorfismo de Nucleotídeo Único , Cor de Cabelo/genética , Turquia , Genótipo , DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...