Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 36(7): 904-918, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28270524

RESUMO

Seasonal reproduction in many organisms requires detection of day length. This is achieved by integrating information on the light environment with an internal photoperiodic time-keeping mechanism. Arabidopsis thaliana promotes flowering in response to long days (LDs), and CONSTANS (CO) transcription factor represents a photoperiodic timer whose stability is higher when plants are exposed to light under LDs. Here, we show that PSEUDO RESPONSE REGULATOR (PRR) proteins directly mediate this stabilization. PRRs interact with and stabilize CO at specific times during the day, thereby mediating its accumulation under LDs. PRR-mediated stabilization increases binding of CO to the promoter of FLOWERING LOCUS T (FT), leading to enhanced FT transcription and early flowering under these conditions. PRRs were previously reported to contribute to timekeeping by regulating CO transcription through their roles in the circadian clock. We propose an additional role for PRRs in which they act upon CO protein to promote flowering, directly coupling information on light exposure to the timekeeper and allowing recognition of LDs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Flores/efeitos da radiação , Luz , Fatores de Transcrição/metabolismo
2.
Plant J ; 84(3): 451-63, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26358558

RESUMO

Seasonal flowering involves responses to changes in day length. In Arabidopsis thaliana, the CONSTANS (CO) transcription factor promotes flowering in the long days of spring and summer. Late flowering in short days is due to instability of CO, which is efficiently ubiquitinated in the dark by the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) E3 ligase complex. Here we show that CO is also phosphorylated. Phosphorylated and unphosphorylated forms are detected throughout the diurnal cycle but their ratio varies, with the relative abundance of the phosphorylated form being higher in the light and lower in the dark. These changes in relative abundance require COP1, because in the cop1 mutant the phosphorylated form is always more abundant. Inactivation of the PHYTOCHROME A (PHYA), CRYPTOCHROME 1 (CRY1) and CRYPTOCHROME 2 (CRY2) photoreceptors in the phyA cry1 cry2 triple mutant most strongly reduces the amount of the phosphorylated form so that unphosphorylated CO is more abundant. This effect is caused by increased COP1 activity, as it is overcome by introduction of the cop1 mutation in the cop1 phyA cry1 cry2 quadruple mutant. Degradation of CO is also triggered in red light, and as in darkness this increases the relative abundance of unphosphorylated CO. Finally, a fusion protein containing truncated CO protein including only the carboxy-terminal region was phosphorylated in transgenic plants, locating at least one site of phosphorylation in this region. We propose that CO phosphorylation contributes to the photoperiodic flowering response by enhancing the rate of CO turnover via activity of the COP1 ubiquitin ligase.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ligação a DNA/metabolismo , Flores/fisiologia , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Criptocromos/genética , Criptocromos/metabolismo , Proteínas de Ligação a DNA/genética , Escuridão , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fosforilação , Fotoperíodo , Fitocromo A/genética , Fitocromo A/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteólise , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética
3.
Plant Cell ; 23(9): 3204-14, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21917549

RESUMO

The Polycomb Group (PcG) pathway represses transcription through a mechanism conserved among plants and animals. PcG-mediated repression can determine spatial territories of gene expression, but it remains unclear whether PcG-mediated repression is a regulatory requirement for all targets. Here, we show the role of PcG proteins in the spatial regulation of FLOWERING LOCUS T (FT), a main activator of flowering in Arabidopsis thaliana exclusively expressed in the vasculature. Strikingly, the loss of PcG repression causes down-regulation of FT. In addition, our results show how the effect of PcG-mediated regulation differs for target genes and that, for FT expression, it relies primarily on tissue differentiation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Flores/crescimento & desenvolvimento , Proteínas Repressoras/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Análise por Conglomerados , Regulação para Baixo , Flores/genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas do Grupo Polycomb , RNA de Plantas/genética , Transcrição Gênica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...