Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sports Sci Med ; 19(2): 374-382, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32390731

RESUMO

This study aimed to examine the effects of lower limb blood flow restriction (BFR) performed during 3-a-side futsal game training on aerobic and anaerobic performance of futsal players. Twelve male futsal players were randomized into two groups (n = 6); both groups performed ten sessions of the 3-a-side game every other day in half of a futsal court; but one group trained under BFR conditions. Pneumatic cuffs used for the BFR group were inflated to 110% leg systolic blood pressure and increased by 10% after each two completed sessions. Before and after the training sessions subjects completed a series of tests to assess aerobic and anaerobic performances along with changes in blood lactate and anabolic and catabolic hormones. All aerobic and anaerobic performance variables improved in both group after training, however improvements in mean power (12.2%, p = 0.03), run time to fatigue (TTF), (7.1%, p = 0.02) and running economy (RE), (-22.7%, p = 0.01) were significantly greater in the BFR group. There were also significant increases in growth hormone (p = 0.01), testosterone to cortisol ratio at first session (p = 0.01) and rate of lactate removal (p = 0.01) at last session in the BFR group compared to the non-BFR group. Small-sided game (SSG) training with the addition of BFR because of accumulated metabolites and hormonal changed leads to substantially greater increases in performance than SSGs training alone.


Assuntos
Desempenho Atlético/fisiologia , Extremidade Inferior/irrigação sanguínea , Condicionamento Físico Humano/métodos , Fluxo Sanguíneo Regional , Futebol/fisiologia , Adulto , Constrição , Frequência Cardíaca , Hormônio do Crescimento Humano/sangue , Humanos , Hidrocortisona/sangue , Ácido Láctico/sangue , Masculino , Percepção/fisiologia , Esforço Físico/fisiologia , Testosterona/sangue , Adulto Jovem
2.
Front Physiol ; 10: 614, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178752

RESUMO

The aim of this study was to investigate the effect of leg blood flow restriction (BFR) applied during a 3-a-side futsal game on strength-related parameters. Twelve male futsal players were randomly assigned into two groups (n = 6 for each group) during 10 training sessions either with or without leg BFR. Prior to and post-training sessions, participants completed a series of tests to assess anabolic hormones and leg strength. Pneumatic cuffs were initially inflated to 110% of leg systolic blood pressure and further increased by 10% after every two completed sessions. In comparison with baseline, the resting post-training levels of myostatin (p = 0.002) and IGF-1/MSTN ratio (p = 0.006) in the BFR group changed, whereas no change in the acute level of IGF-1 and myostatin after exercise was observed. Peak torque of knee extension and flexion increased in both groups (p < 0.05). A trend of increased neural activation of all heads of the quadriceps was observed in both groups, however, it was statistically significant only for rectus femoris in BFR (p = 0.02). These findings indicated that the addition of BFR to normal futsal training might induce greater neuromuscular benefits by increasing muscle activation and augmenting the hormonal response.

3.
Appl Bionics Biomech ; 2016: 8985690, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27843284

RESUMO

The insole shape and the resulting plantar stress distribution have a pivotal impact on overall health. In this paper, by Finite Element Method, maximum stress value and stress distribution of plantar were studied for different insoles designs, which are the flat surface and the custom-molded (conformal) surface. Moreover, insole thickness, heel's height, and different materials were used to minimize the maximum stress and achieve the most uniform stress distribution. The foot shape and its details used in this paper were imported from online CT-Scan images. Results show that the custom-molded insole reduced maximum stress 40% more than the flat surface insole. Upon increase of thickness in both insole types, stress distribution becomes more uniform and maximum stress value decreases up to 10%; however, increase of thickness becomes ineffective above a threshold of 1 cm. By increasing heel height (degree of insole), maximum stress moves from heel to toes and becomes more uniform. Therefore, this scenario is very helpful for control of stress in 0.2° to 0.4° degrees for custom-molded insole and over 1° for flat insole. By changing the material of the insole, the value of maximum stress remains nearly constant. The custom-molded (conformal) insole which has 0.5 to 1 cm thickness and 0.2° to 0.4° degrees is found to be the most compatible form for foot.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...