Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Folia Microbiol (Praha) ; 69(2): 323-332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37338677

RESUMO

Fungi harboring lignocellulolytic activity accelerate the composting process of agricultural wastes; however, using thermophilic fungal isolates for this process has been paid little attention. Moreover, exogenous nitrogen sources may differently affect fungal lignocellulolytic activity. A total of 250 thermophilic fungi were isolated from local compost and vermicompost samples. First, the isolates were qualitative assayed for ligninase and cellulase activities using Congo red (CR) and carboxymethyl cellulose (CMC) as substrates, respectively. Then, twenty superior isolates harboring higher ligninase and cellulase activities were selected and quantitatively assayed for both enzymes in basic mineral (BM) liquid medium supplemented with the relevant substrates and nitrogen sources including (NH4)2SO4 (AS), NH4NO3 (AN), urea (U), AS + U (1:1), or AN + U (1:1) with final nitrogen concentration of 0.3 g/L. The highest ligninase activities of 99.94, 89.82, 95.42, 96.25, and 98.34% of CR decolorization were recorded in isolates VC85, VC94, VC85, C145, and VC85 in the presence of AS, U, AS + U, AN, and AN + U, respectively. Mean ligninase activity of 63.75% in superior isolates was achieved in the presence of AS and ranked the highest among other N compounds. The isolates C200 and C184 exhibited the highest cellulolytic activity in the presence of AS and AN + U by 8.8 and 6.5 U/ml, respectively. Mean cellulase activity of 3.90 U/mL was achieved in AN + U and ranked the highest among other N compounds. Molecular identification of twenty superior isolates confirmed that all of them are belonging to Aspergillus fumigatus group. Focusing on the highest ligninase activity of the isolate VC85 in the presence of AS, the combination can be recommended as a potential bio-accelerator for compost production.


Assuntos
Celulase , Compostagem , Oxigenases , Nitrogênio , Fungos
2.
Heliyon ; 9(3): e13825, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36873502

RESUMO

Plant diseases are still the main problem for the reduction in crop yield and a threat to global food security. Additionally, excessive usage of chemical inputs such as pesticides and fungicides to control plant diseases have created another serious problem for human and environmental health. In view of this, the application of plant growth-promoting rhizobacteria (PGPR) for controlling plant disease incidences has been identified as an eco-friendly approach for coping with the food security issue. In this review, we have identified different ways by which PGPRs are capable of reducing phytopathogenic infestations and enhancing crop yield. PGPR suppresses plant diseases, both directly and indirectly, mediated by microbial metabolites and signaling components. Microbial synthesized anti-pathogenic metabolites such as siderophores, antibiotics, lytic enzymes, hydrogen cyanide, and several others act directly on phytopathogens. The indirect mechanisms of reducing plant disease infestation are caused by the stimulation of plant immune responses known as initiation of systemic resistance (ISR) which is mediated by triggering plant immune responses elicited through pathogen-associated molecular patterns (PAMPs). The ISR triggered in the infected region of the plant leads to the development of systemic acquired resistance (SAR) throughout the plant making the plant resistant to a wide range of pathogens. A number of PGPRs including Pseudomonas and Bacillus genera have proven their ability to stimulate ISR. However, there are still some challenges in the large-scale application and acceptance of PGPR for pest and disease management. Further, we discuss the newly formulated PGPR inoculants possessing both plant growth-promoting activities and plant disease suppression ability for a holistic approach to sustaining plant health and enhancing crop productivity.

3.
Physiol Mol Biol Plants ; 28(2): 347-361, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35400886

RESUMO

Salinity is one of the most severe abiotic stress in the world. Also, the irrigated lands have been treated with second salinity. Canola is one of the most important industrial crops for oil production all over the world which is affected by salinity. Salt stress causes imbalanced ion hemostasis (Na+ and K+) and interrupted mineral absorption in canola. Also, salinity stress leads to oxidative stress (production and accumulation of reactive oxygen species (ROS). Accumulation of ROS is extremely dangerous and lethal for plants. As a consequence, canola production is reduced under salinity stress. So, a suitable approach should be found to deal with salinity stress and prevent the loss of production oilseed. Plant growth-promoting rhizobacteria (PGPR) can colonize on the plant root surface and alleviate the salt stress effect by providing minerals like nitrogen, phosphate, and potassium. Also, they alleviate salt stress by phytohormones like auxin (IAA), cytokinin (CK), and abscisic acid (ABA). This study focus on physiological parameters like leaf area (LA), root length (RL), shoot length (SL), chlorophyll fluorescence indexes (Fv/Fm and Fv/F0), relative water content (RWC), electrolyte leakage index (ELI), photosynthesis pigments (chlorophyll a, b, and carotenoids), Na+, and K+; and biochemical parameters like malondialdehyde (MDA) content, hydrogen peroxide content (H2O2), total protein content, proline, antioxidant capacity, and antioxidant enzyme activities in canola through the inoculation with Enterobacter sp. S16-3 and Pseudomonas sp. C16-2O. This study showed that LA, RL, SL, chlorophyll fluorescence indexes, RWC were significantly increased and ELI was significantly decreased in bacteria inoculated treatments. Also, MDA, H2O2 were decreased, and antioxidant capacity, proline, and antioxidant enzymes were increased due to inoculation with these bacteria. Besides, the amount of K+ as an index of salinity tolerance significantly increased, and leaf Na+ content was significantly decreased.

4.
World J Microbiol Biotechnol ; 35(8): 126, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363938

RESUMO

Isolation and identification of temperature tolerant phosphate solubilizing bacteria (TTPSB) and their use as microbial fertilizers was the main goal of the study. In this study, TTPSB were isolated from soil samples treated for 16 h at 55 °C. Their phosphate solubilizing activity was either evaluated in solid media by forming a clear zone (halo) or in liquid media by quantification of the soluble phosphate in the growth medium. Five colonies (RPS4, RPS6, RPS7, RPS8 and RPS9) were identified to be able to form a halo and two of the isolates (RPS9 and RPS7) tolerated a temperature of 55 °C. With tricalcium phosphate (TCP) as the sole P-source, the phosphate solubilizing capacity of RPS9 and RPS7 was determined to be 563.8 and 324.1 mg P L-1 in liquid Sperber medium, respectively. Both bacterial isolates were identified as Pantoea agglomerans by molecular and biochemical characterization. To be used as a microbial fertilizer a carrier system for the temperature tolerant bacteria consisting of rock phosphate, sulfur and bagasse was used. It could be established that the bacterial cell counts of the microbial fertilizers were acceptable for application after storage for 4 months at 28 °C. In a greenhouse experiment using pot cultures, inoculation of maize (S.C.704) with the microbial fertilizers in an autoclaved soil resulted in a significant effect on total fresh and dry weight of the plant root and shoot as well as on the P content of the root and shoot. The effects observed with RPS9 as a component of the microbial fertilizer on plant growth and P nutrition was comparable with the addition of 50% of recommended triple superphosphate (TSP) dose. Using temperature tolerant bacteria in microbial fertilizers will overcome limitations in production and storage of the microbial fertilizers and contribute to a environmentally-friendly agriculture. The temperature tolerant P. agglomerans strain RPS9 was shown to be effective as part of a microbial fertilizer in supporting the growth and P uptake in maize.


Assuntos
Agricultura/métodos , Fosfatos de Cálcio/metabolismo , Pantoea/isolamento & purificação , Pantoea/metabolismo , Microbiologia do Solo , Zea mays/crescimento & desenvolvimento , Técnicas Bacteriológicas , Biotransformação , Fosfatos de Cálcio/química , Meios de Cultura/química , Temperatura Alta , Pantoea/classificação , Pantoea/efeitos da radiação , Solubilidade , Zea mays/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...