Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1292045, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046599

RESUMO

Light plays a crucial role in photosynthesis, which is an essential process for plantlets produced during in vitro tissue culture practices and ex vitro acclimatization. LED lights are an appropriate technology for in vitro lighting but their effect on propagation and photosynthesis under in vitro condition is not well understood. This study aimed to investigate the impact of different light spectra on growth, photosynthetic functionality, and stomatal characteristics of micropropagated shoots of Persian walnut (cv. Chandler). Tissue-cultured walnut nodal shoots were grown under different light qualities including white, blue, red, far-red, green, combination of red and blue (70:30), combination of red and far-red (70:30), and fluorescent light as the control. Results showed that the best growth and vegetative characteristics of in vitro explants of Persian walnut were achieved under combination of red and blue light. The biggest size of stomata was detected under white and blue lights. Red light stimulated stomatal closure, while stomatal opening was induced under blue and white lights. Although the red and far-red light spectra resulted in the formation of elongated explants with more lateral shoots and anthocyanin content, they significantly reduced the photosynthetic functionality. Highest soluble carbohydrate content and maximum quantum yield of photosystem II were detected in explants grown under blue and white light spectra. In conclusion, growing walnut explants under combination of red and blue lights leads to better growth, photosynthesis functionality, and the emergence of functional stomata in in vitro explants of Persian walnuts.

2.
Sci Rep ; 13(1): 11286, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438442

RESUMO

Persian walnut (Juglans regia) has a considerable economic importance worldwide. However, the vigor and vitality of walnut trees were heavily affected by bark canker during the last few years. Irregular longitudinal cankers in the outer bark, stem tissue necrosis, and bleeding with black-colored exudates walnut trees were observed in Kermanshah, Hamedan, Markazi, Alborz, Isfahan, Qom, Semnan, and Razavi Khorasan provinces in western, central and eastern Iran during 2018 and 2019. A total of 150 symptomatic samples were collected from affected walnut trees in order to identify bacteria associated with walnut decline. Two-hundred sixty strains with a metallic green sheen were isolated on EMB-agar medium. The pathogenicity of all strains was proved by inoculating a suspension of the bacterial strains under the bark of immature walnut fruits cv. 'Hartley'. Ninety-five strains caused necrosis and a dark-colored region in the mesocarp around the inoculation site 14 days post-inoculation. Moreover, 12 representative strains induced necrotic and black-colored tissues in the bark of young green twigs of two-year old walnut seedling cv. 'Chandler'. The strains were classified into four categories based on conventional phenotypic characters confirmed with the 16S rRNA gene sequences. A phylogenetic tree based on the concatenated sequences of two housekeeping gene fragments, gyrB and infB, indicated that strains including I1, Q6, and S6 were grouped in a cluster with Gibbsiella quercinecans FBR97T as well as strains I2, I5, and KE6 were clustered with Rahnella victoriana FRB 225T. Moreover, strains MR1, MR3, and MR5 were grouped with the Enterobacter hormaechei subsp. hoffmannii DSM 14563T. The phylogenetic analyses based on the partial sequencing of housekeeping genes including fusA, pyrG, and leuS revealed that strains KH1, KH3, and KH7 belong to Citrobacter braakii species. To the best of our knowledge, this is the first report of C. braakii and E. hormaechei as plant pathogens and R. victoriana associated with walnut decline.


Assuntos
Juglans , Filogenia , RNA Ribossômico 16S/genética , Necrose
3.
Plants (Basel) ; 10(11)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834597

RESUMO

The production and consumption of nuts are increasing in the world due to strong economic returns and the nutritional value of their products. With the increasing role and importance given to nuts (i.e., walnuts, hazelnut, pistachio, pecan, almond) in a balanced and healthy diet and their benefits to human health, breeding of the nuts species has also been stepped up. Most recent fruit breeding programs have focused on scion genetic improvement. However, the use of locally adapted grafted rootstocks also enhanced the productivity and quality of tree fruit crops. Grafting is an ancient horticultural practice used in nut crops to manipulate scion phenotype and productivity and overcome biotic and abiotic stresses. There are complex rootstock breeding objectives and physiological and molecular aspects of rootstock-scion interactions in nut crops. In this review, we provide an overview of these, considering the mechanisms involved in nutrient and water uptake, regulation of phytohormones, and rootstock influences on the scion molecular processes, including long-distance gene silencing and trans-grafting. Understanding the mechanisms resulting from rootstock × scion × environmental interactions will contribute to developing new rootstocks with resilience in the face of climate change, but also of the multitude of diseases and pests.

4.
Sci Rep ; 10(1): 17672, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-33077742

RESUMO

Drought is an important environmental stress that has negative effects on plant growth leading to a reduction in yield. In this study, the positive role of nanoparticles of SiO2, Se, and Se/SiO2 (SiO2-NPs, Se-NPs and Se/SiO2-NPs) has been investigated in modulating negative effects of drought on the growth and yield of strawberry plants. Spraying of solutions containing nanoparticles of SiO2, Se, and Se/SiO2 (50 and 100 mg L-1) improved the growth and yield parameters of strawberry plants grown under normal and drought stress conditions (30, 60, and 100%FC). Plants treated with Se/SiO2 (100 mg L-1) preserved more of their photosynthetic pigments compared with other treated plants and presented higher levels of key osmolytes such as carbohydrate and proline. This treatment also increased relative water content (RWC), membrane stability index (MSI) and water use efficiency (WUE). In addition, exogenous spraying of Se/SiO2 increased drought tolerance through increasing the activity of antioxidant enzymes including catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and superoxide dismutase (SOD) as well as decreasing lipid peroxidation and hydrogen peroxide (H2O2) content. Increase in biochemical parameters of fruits such as anthocyanin, total phenolic compounds (TPC), vitamin C and antioxidant activity (DPPH) in strawberry plants treated with Se/SiO2 under drought stress revealed the positive effects of these nanoparticles in improving fruit quality and nutritional value. In general, our results supported the positive effect of the application of selenium and silicon nanoparticles, especially the absolute role of Se/SiO2 (100 mg L-1), on the management of harmful effects of soil drought stress not only in strawberry plants, but also in other agricultural crops.


Assuntos
Fragaria/fisiologia , Nanoestruturas , Compostos de Selênio/farmacologia , Dióxido de Silício/farmacologia , Clorofila/metabolismo , Desidratação , Fragaria/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Malondialdeído/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia
5.
BMC Plant Biol ; 20(1): 136, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32245410

RESUMO

BACKGROUND: Flower development and sufficient fruit set are important parameters with respect to walnut yield. Knowledge about flowering genes of fruit trees can help to conduct better molecular breeding programs. Therefore, this study was carried out to investigate the expression pattern of some flowering genes (FT, SOC1, CAL, LFY and TFL1) in Persian walnut (cv. Chandler) during the growing season and winter dormancy. RESULTS: The results showed that walnut flower induction and initiation in Shahmirzad, Iran occurred in early June and late September, respectively. After meeting chilling and heat requirement, flower differentiation and anthesis occurred in late-March and mid-April to early-May, respectively. Study of flowering gene expression showed that the expression of the FT gene increased in three stages including before breaking of bud dormancy, from late March to late April (coincided with flower differentiation and anthesis) and from late May to mid-June (coincided with flower induction). Like FT, the expression of SOC1 gene increased during flower induction and initiation (mid-May to early-August) as well as flower anthesis (mid-April to early-May). LFY and CAL genes as floral meristem identity genes are activated by FT and SOC1 genes. In contrast with flowering stimulus genes, TFL1 showed overexpression during winter dormancy which prevented flowering. CONCLUSION: The expression of FT gene activated downstream floral meristem identity genes including SOC1, CAL and LFY which consequently led to release bud dormancy as well as flower anthesis and induction. Also, TFL1 as a flowering inhibitor gene in walnut showed overexpression during the bud dormancy. Chilling accumulation reduced TFL1 gene expression and increased the expression of flowering genes which ultimately led to overcome dormancy.


Assuntos
Flores/genética , Expressão Gênica , Juglans , Flores/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Irã (Geográfico) , Juglans/genética , Juglans/crescimento & desenvolvimento , Juglans/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Dormência de Plantas/genética , Dormência de Plantas/fisiologia , Proteínas de Plantas/genética , Reprodução/genética , Reprodução/fisiologia , Estações do Ano , Fatores de Transcrição/metabolismo
6.
PLoS One ; 14(6): e0218725, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31246980

RESUMO

Due to higher temperatures and lower water availability, climate change is likely to have a major impact on walnut production in the near future. Climate change will alter the land suitability for walnut cultivation around the world, especially in arid and semi-arid regions like Iran. Here, land suitability for the cultivation of walnut (Juglans regia L.) in Iran was determined using the GIS for present and future conditions (2020-2049) with an approach to climate change. Accordingly, data from 375 synoptic stations throughout Iran were gathered for climatic factors including average, minimum and maximum temperatures, relative humidity and chilling requirement. Also, ASTER sensors (Advanced Spaceborne Thermal Emission and Reflection Radiometer) and their data provided this research with cells that make a precision of 150 m (5 s), and the data were used for gauging geological parameters such as altitude and land slope. The electrical conductivity (EC) of soil and water were informed by the data bank of the Iranian Water Resources Management. The results of temperature simulations for the future (2020-2049) were analyzed by 21 AOGCM-AR5 models under the RCP4.5 emission scenario. In the first phase of evaluations, the maps of land suitability were constructed for present conditions by considering a network of the above-mentioned parameters. By combining these layers of information, the final map of land suitability was illustrated for walnut cultivation. In the second phase, the NEX-GDDP was used in order to determine land suitability for the future (2020-2049). The results showed that Iran currently has 582844 km2 of land suitable for walnut cultivation. However, the future will see less suitable lands: the current area will be reduced by 6.19%, from 582844 km2 to 546710 km2. In general, the northern, northwestern and western margins of Iran are currently suitable for walnut cultivation. By approximation, these lands will also be major areas for prospective cultivations of walnut in the future (2020-2049), even though their current stretch will be reduced.


Assuntos
Juglans/crescimento & desenvolvimento , Clima , Mudança Climática , Produção Agrícola/métodos , Produção Agrícola/tendências , Produtos Agrícolas/crescimento & desenvolvimento , Monitoramento Ambiental , Sistemas de Informação Geográfica , Irã (Geográfico) , Modelos Teóricos , Recursos Naturais , Estudos Prospectivos , Solo , Recursos Hídricos/provisão & distribuição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...