Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1289785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38173928

RESUMO

Calpains are modulatory proteases that modify diverse cellular substrates and play essential roles in eukaryots. The best studied are animal cytosolic calpains. Here, we focus on enigmatic membrane-anchored calpains, their structural and functional features as well as phylogenetic distribution. Based on domain composition, we identified four types of membrane-anchored calpains. Type 1 and 2 show broad phylogenetic distribution among unicellular protists and streptophytes suggesting their ancient evolutionary origin. Type 3 and 4 diversified early and are present in brown algae and oomycetes. The plant DEK1 protein is the only representative of membrane-anchored calpains that has been functionally studied. Here, we present up to date knowledge about its structural features, putative regulation, posttranslational modifications, and biological role. Finally, we discuss potential model organisms and available tools for functional studies of membrane-anchored calpains with yet unknown biological role. Mechanistic understanding of membrane-anchored calpains may provide important insights into fundamental principles of cell polarization, cell fate control, and morphogenesis beyond plants.

2.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232391

RESUMO

Staphylococcus epidermidis is a known opportunistic pathogen and is one of the leading causes of chronic biofilm-associated infections. Biofilm formation is considered as a main strategy to resist antibiotic treatment and help bacteria escape from the human immune system. Understanding the complex mechanisms in biofilm formation can help find new ways to treat resistant strains and lower the prevalence of nosocomial infections. In order to examine the role of RNAIII regulated by the agr quorum sensing system and to what extent it influences biofilm resistance to antimicrobial agents, deletion mutant S. epidermidis RP62a-ΔRNAIII deficient in repressor domains with a re-maining functional hld gene was created. A deletion strain was used to examine the influence of oxacillin in combination with vanillin on biofilm resistance and cell survival was determined. Utilizing real-time qPCR, confocal laser scanning microscopy (CLSM), and crystal violet staining analyses, we found that the RNAIII-independent controlled phenol soluble modulins (PSMs) and RNAIII effector molecule have a significant role in biofilm resistance to antibiotics and phenolic compounds, and it protects the integrity of biofilms. Moreover, a combination of antibiotic and antimicrobial agents can induce methicillin-resistant S. epidermidis biofilm formation and can lead to exceedingly difficult medical treatment.


Assuntos
Anti-Infecciosos , Infecções Estafilocócicas , Antibacterianos/farmacologia , Biofilmes , Violeta Genciana , Humanos , Oxacilina , Fenóis , RNA Bacteriano , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/genética
3.
World J Microbiol Biotechnol ; 38(11): 214, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053335

RESUMO

Solubility is one of key factors influencing the heterologous production of recombinant proteins in biotechnology. Among many aggregation-prone proteins, alcohol dehydrogenase (ADH-A) from Rhodococcus ruber (in this work abbreviated RrADH) shows a great potential in processes involved in the biotransformation of natural compounds. As ADH-A is a potentially high value asset in industrial biotransformation processes, improvement of its solubility would be of major commercial benefit. Predictive tools and in silico analysis provide a fast means for improving protein properties, for selecting appropriate changes, and ultimately for saving costs. We have therefore focused on enhancement of the solubility of RrADH using an online accesible predictive tool Aggrescan 3D 2.0. Selected mutations were introduced into the protein amino acid sequence by using site-directed PCR. This led to a 17% increase in the protein solubility of RrADHmut1 and a 98% increase for RrADHmut2. Moreover, the basic kinetics of the enzyme reaction were positively affected, further optimizing the overall performance of the production process.


Assuntos
Álcool Desidrogenase , Rhodococcus , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodococcus/metabolismo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...