Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 254(Pt B): 113077, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31473387

RESUMO

This work investigates the absorption properties of soluble brown carbon (BrC), extracted in methanol and water, from ambient aerosol (PM10) samples, collected over an urban background site in Mumbai, India. The diurnal variability was investigated in samples collected in the morning (7-11 a.m.) and afternoon (12-4 p.m.) periods. Absorption properties of BrC (in the 300-600-nm wavelength range) were measured in filter extracts of water-soluble organic carbon (WSOC) and methanol-soluble organic carbon (MSOC). WSOC and MSOC accounted for on average 52% and 77%, respectively, of the measured OC, potentially indicating unextracted BrC and rendering these values the lower bound. Compared with afternoon samples, the morning samples of MSOC and WSOC had increased BrC concentrations and absorption coefficients (babs365; 40%-65%). The correlation between babs365 and EC, ns-K+, and NO3- in the morning samples indicated contributions from primary sources, including both biomass and vehicular sources. The decreased babs365 in the afternoon samples was partly explained by mixing layer dilution, accompanied by a reduction in the concentrations of primary aerosol constituents. Furthermore, in the afternoon samples, 1HNMR spectroscopy revealed the presence of more oxidized functional groups and significantly higher OC/EC and WSOC/OC ratios, indicating the greater aging of afternoon aerosol. The MAC365 (m2gC-1) for both WSOC and MSOC extracts decreased significantly by 20%-34% in the afternoon samples compared with the morning samples, indicating degradation in the absorption properties of the particles and potentially a change in the constituent BrC chromophores.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Cidades , Monitoramento Ambiental , Índia , Material Particulado/análise
2.
Sci Total Environ ; 656: 280-296, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30513422

RESUMO

A first-ever long-term (2009-2015) study on the fine particulate matter (PM2.5) and black carbon (BC) aerosol were conducted over Himalaya in order to investigate the characteristics, temporal variations and the important factors regulating the long-term trend. The study was conducted over a high altitude station, Darjeeling (27°01'N, 88°15'E, 2200 m asl) representing a typical high altitude urban atmosphere at eastern Himalaya in India. The average concentrations of PM2.5 and BC over a period of seven years were 25.2 ±â€¯5.6 µg m-3 (ranging between 2.2 and 220.4 µg m-3) and 3.4 ±â€¯0.7 µg m-3 (0.4 to 15.6 µg m-3) respectively. We observed decreasing trends in both PM2.5 (49% at a rate of 170 ng m-3 month-1) and BC (34% at the rate of 20 ng m-3 month-1) mass concentration over this region from 2009 to 2015. We extensively studied the impact of micrometeorological parameters on the long-term trend in PM2.5 and BC through the correlation analysis. The significant changes in boundary layer dynamics over this region played a major role in the decreasing trend of aerosols. The concentration weighted trajectory analysis revealed that the important contributory long-distant source regions for PM2.5 and BC over eastern Himalaya were Indo Gangetic Plane and Nepal. The contributions from these regions were found to be decreased significantly from 2009 to 2015. Investigations on the fire counts associated with the forest fire, and open burning activities through the satellite observations revealed that the decreasing trend in PM2.5 and BC over eastern Himalaya is well correlated to the decreasing trend in the fire counts over IGP and Nepal. We also explored that the changes and up gradation of the domestic fuel at the Indo Gangetic Plane regions in recent years not only improved the regional air quality but also affected the atmospheric environment over the eastern part of Himalaya.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...