Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (167)2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33586707

RESUMO

Described is an experimental procedure that enables high-power laser irradiation of microfabricated targets. Targets are brought to the laser focus by a closed feedback loop that operates between the target manipulator and a ranging sensor. The target fabrication process is explained in detail. Representative results of MeV-level proton beams generated by irradiation of 600 nm thick gold foils at a rate of 0.2 Hz are given. The method is compared with other replenishable target systems and the prospects of increasing the shot rates to above 10 Hz are discussed.


Assuntos
Lasers , Microtecnologia , Automação , Íons
2.
Rev Sci Instrum ; 90(1): 013301, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709173

RESUMO

Optical Kerr gating technique has been employed to investigate the life history of relativistic electrons in solids by temporally gating their Cherenkov emission. Mega-ampere currents of relativistic electrons are created during ultra-intense (2 × 1019 W/cm2) laser-solid interactions. In order to measure the lifetime of these relativistic electrons in solids, we temporally gate their Cherenkov emission using an optical Kerr gate (OKG). The OKG is induced in a nonlinear medium, namely, carbon-di-sulphide (CS2), with a measured gate-width (FWHM) of 2 ps. The gate femtosecond laser pulse is synchronized with the intense interaction pulse generating relativistic electrons. The arrival time of the gate laser pulse on the CS2 cell is varied with the help of a delay stage. We find that Cherenkov emission from relativistic electrons created with a ultra-short laser pulse (25 fs) lives as long as 120 ps, a few thousand times that of the incident light pulse.

3.
Sci Rep ; 9(1): 407, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674944

RESUMO

Remote manipulation (triggering and guiding) of lightning in atmospheric conditions of thunderstorms has been the subject of intense scientific research for decades. High power, ultrashort-pulse lasers are considered attractive in generating plasma channels in air that could serve as conductors/diverters for lightning. However, two fundamental obstacles, namely the limited length and lifetime of such plasma channels prevented their realization to this date. In this paper, we report decisive experimental results of our multi-element broken wire concept that extends the generated plasma channels to the required tens of meters range. We obtain 13-meter-long plasma wire, limited only by our current experimental setup, with plasma conditions that could be sufficient for the leader initiation. This advance, coupled with our demonstrated method of laser heating for long time sustenance of the plasma channel, is a major, significant step towards controlling lightning.

4.
Phys Rev Lett ; 120(6): 065001, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481271

RESUMO

We report the lifetime of intense-laser (2×10^{19} W/cm^{2}) generated relativistic electron pulses in solids by measuring the time evolution of their Cherenkov emission. Using a picosecond resolution optical Kerr gating technique, we demonstrate that the electrons remain relativistic as long as 50 picoseconds-more than 1000 times longer than the incident light pulse. Numerical simulations of the propagation of relativistic electrons and the emitted Cherenkov radiation with Monte Carlo geant4 package reproduce the striking experimental findings.

5.
Nat Commun ; 8(1): 1184, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084961

RESUMO

Generation and application of energetic, broadband terahertz pulses (bandwidth ~0.1-50 THz) is an active and contemporary area of research. The main thrust is toward the development of efficient sources with minimum complexities-a true table-top setup. In this work, we demonstrate the generation of terahertz radiation via ultrashort pulse induced filamentation in liquids-a counterintuitive observation due to their large absorption coefficient in the terahertz regime. The generated terahertz energy is more than an order of magnitude higher than that obtained from the two-color filamentation of air (the most standard table-top technique). Such high terahertz energies would generate electric fields of the order of MV cm-1, which opens the doors for various nonlinear terahertz spectroscopic applications. The counterintuitive phenomenon has been explained via the solution of nonlinear pulse propagation equation in the liquid medium.

6.
Opt Express ; 24(25): 28419-28432, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958487

RESUMO

Ultra-high intensity (> 1018 W/cm2), femtosecond (~30 fs) laser induced fast electron transport in a transparent dielectric has been studied for two laser systems having three orders of magnitude different peak to pedestal intensity contrast, using ultrafast time-resolved shadowgraphy. Use of a 400 nm femtosecond pulse as a probe enables the exclusive visualization of the dynamics of highest density electrons (> 7 × 1021 cm-3) observed so far. High picosecond contrast (~109) results in greater coupling of peak laser energy to the plasma electrons, enabling long (~1 mm), collimated (divergence angle ~2°) transport of fast electrons inside the dielectric medium at relativistic speeds (~0.66c). In comparison, the laser system with a contrast of ~106 has a large pre-plasma, limiting the coupling of laser energy to the solid and yielding limited fast electron injection into the dielectric. In the lower contrast case, bulk of the electrons expand as a cloud inside the medium with an order of magnitude lower speed than that of the fast electrons obtained with the high contrast laser. The expansion speed of the plasma towards vacuum is similar for the two contrasts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...