Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 408: 110161, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38718901

RESUMO

BACKGROUND: With the aid of a brain computer interface (BCI), users can communicate and receive signals wirelessly or over wired connections to operate smart devices. A BCI classifier's architecture is quite difficult since numerous elements should be combined. These elements are made up of brain signals, which also include high levels of weak sounds that could provide reliable participant recordings of daily activities. We must use computer vision techniques to create a model in order to control those information. The high dimension and volume of signals present the classification classifier with its primary obstacles. NEW METHOD: Due to this, we extracted and classified the brain activity in this study, and we also presented a novel hierarchical recursive feature elimination method that we refer to as HRFE embracing noisy additions. HRFE makes a variety of categorization suggestions to eliminate bias in classifying BCI systems of different types. We put the HRFE to the test on two BCI signal data sets-specifically, dataset I and BCI contests III-using shallow and deep convolution network classification techniques. Just a grid of assets is used to create electrocorticography (ECoG) signals on the contralateral (right) motor cortex, and these signals are recorded in the BCI contests III database. RESULTS: Using ECoG signals, we choose the top 20 features that have the biggest effects on distortion and classification selection. COMPARISON WITH EXISTING METHODS: The simulation findings show that HRFE has a significant computer vision enhancement when compared to comparable feature selection methods in the literature, particularly for ECoG signal, which achieves about 93% reliability.


Assuntos
Interfaces Cérebro-Computador , Encéfalo , Tomada de Decisões , Humanos , Tomada de Decisões/fisiologia , Encéfalo/fisiologia , Algoritmos , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Processamento de Sinais Assistido por Computador
2.
Front Physiol ; 13: 798376, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370794

RESUMO

Electrodiagnosis is routinely integrated into clinical neurophysiology practice for peripheral nerve disease diagnoses, such as neuropathy, demyelinating disorders, nerve entrapment/impingement, plexopathy, or radiculopathy. Measured with conventional surface electrodes, the propagation of peripheral nerve action potentials along a nerve is the result of ionic current flow which, according to Ampere's Law, generates a small magnetic field that is also detected as an "action current" by magnetometers, such as superconducting quantum interference device (SQUID) Magnetoencephalography (MEG) systems. Optically pumped magnetometers (OPMs) are an emerging class of quantum magnetic sensors with a demonstrated sensitivity at the 1 fT/√Hz level, capable of cortical action current detection. But OPMs were ostensibly constrained to low bandwidth therefore precluding their use in peripheral nerve electrodiagnosis. With careful OPM bandwidth characterization, we hypothesized OPMs may also detect compound action current signatures consistent with both Sensory Nerve Action Potential (SNAP) and the Hoffmann Reflex (H-Reflex). In as much, our work confirms OPMs enabled with expanded bandwidth can detect the magnetic signature of both the SNAP and H-Reflex. Taken together, OPMs now show potential as an emerging electrodiagnostic tool.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36760805

RESUMO

In the geriatric population, physical injuries sustained by an unintentional or an unpredictable fall on a hard surface is the leading cause of injury related morbidity and sometimes mortality. Each year, close to 30% of adults around the age group of 65 fall down at least once. In the year 2015, close to 2.9 million falls were reported, resulting in 33,000 deaths. As much as 61% of elderly nursing home residents fell at some point during their first year of residence.These falls may aggravate the situation leading to bone fracture, concussion, internal bleeding or traumatic brain injury when immediate medical attention is not offered to the person. Delay in course of the event may sometimes lead to death as well. Recently, many studies have come up with wearable devices. These devices that are now commercially available in the market are small, compact, wireless, battery operated and power efficient. This study discusses the findings that the optimal location for a Fall Detection Sensor on the human body is in front of the Shin bone. This is based on the 183 features collected from Inertial Measurement Unit (IMU) sensors placed on 16 human body locations and trained-tested using Convolutional Neural Networks (CNN) machine learning paradigm. The ultimate goal is to develop a mobile, wireless, wearable, low-power medical device that uses a small Lattice iCE40 Field Programmable Gate Array (FPGA) integrated with gyro and accelerometer sensors which detects whether the device wearer has fallen or not. This FPGA is capable of realizing the Neural Network model implemented in it. This Insitu or Edge inferencing wearable device is capable of providing real-time classifications without any Transmitting or Receiving capabilities over a wireless communication channel.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37223585

RESUMO

A leading cause of physical injury sustained by elderly persons is the event of unintentionally falling. A delay between the time of fall and the time of medical attention can exacerbate injury if the fall resulted in a concussion, traumatic brain injury, or bone fracture. The authors present a solution capable of finding and tracking, in real-time, the location of an elderly person within an indoor facility, using only existing Wi-Fi infrastructure. This paper discusses the development of an open source software framework capable of finding the location of an individual within 3m accuracy using 802.11 Wi-Fi in good coverage areas. This framework is comprised of an embedded software layer, a Web Services layer, and a mobile application for monitoring the location of individuals, calculated using trilateration, with Kalman filtering employed to reduce the effect of multipath interference. The solution provides a real-time, low cost, extendible solution to the problem of indoor geolocation to mitigate potential harm to elderly persons who have fallen and require immediate medical help.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37223210

RESUMO

This paper presents early work on a fall detection method using transfer learning method, in conjunction with a long-term effort to combine efficient machine learning and prior personalized musculoskeletal modeling to deploy fall injury mitigation in geriatric subjects. Inspired by the tremendous progress in image-based object recognition with deep convolutional neural networks (DCNNs), we opt for a pre-trained kinematics-based machine learning approach through existing large-scale annotated accelerometry datasets. The accelerometry datasets are converted to images using time-frequency analysis, based on scalograms, by computing the continuous wavelet transform filter bank. Subsequently, data augmentation is performed on these scalogram images to increase accuracy, thereby complementing limited labeled fall sensor data, enabling transfer learning from the existing pre-trained model. The experimental results on publicly available URFD datasets demonstrate that transfer learning leads to a better performance than the existing methods in the case of scarce labeled training data.

6.
IEEE Glob Commun Conf ; 20192019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37223665

RESUMO

A leading cause of physical injury sustained by elderly persons is the event of unintentionally falling onto a hard surface. Approximately 32-42% of those 70 and over fall at least once each year, and those who live in assisted living facilities fall with greater frequency per year than those who live in residential communities. Delay between the time of fall and the time of medical attention can exacerbate injury if the fall resulted in concussion, traumatic brain injury, or bone fracture. Several implementations of mobile, wireless, wearable, low-power fall detection sensors (FDS) have become commercially available. These devices are typically worn around the neck as a pendant, or on the wrist, as a watch is worn. Based on features collected from IMU sensors placed at sixteen body locations, and used to train four different machine learning models, our findings show the optimal placement for an FDS on the body is in front of the shinbone.

7.
Sensors (Basel) ; 15(11): 28603-27, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26569260

RESUMO

One of the emerging networking standards that gap between the physical world and the cyber one is the Internet of Things. In the Internet of Things, smart objects communicate with each other, data are gathered and certain requests of users are satisfied by different queried data. The development of energy efficient schemes for the IoT is a challenging issue as the IoT becomes more complex due to its large scale the current techniques of wireless sensor networks cannot be applied directly to the IoT. To achieve the green networked IoT, this paper addresses energy efficiency issues by proposing a novel deployment scheme. This scheme, introduces: (1) a hierarchical network design; (2) a model for the energy efficient IoT; (3) a minimum energy consumption transmission algorithm to implement the optimal model. The simulation results show that the new scheme is more energy efficient and flexible than traditional WSN schemes and consequently it can be implemented for efficient communication in the IoT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...