Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(33)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38670150

RESUMO

Phonon modes and their association with the electronic states have been investigated for the metallic EuCu2As2system. In this work, we present the Raman spectra of this pnictide system which clearly shows the presence of seven well defined peaks above 100 cm-1that is consistent with the locally non-centrosymmetricP4/nmmcrystal structure, contrary to that what is expected from the accepted symmorphicI4/mmmstructure. Lattice dynamics calculations using theP4/nmmsymmetry attest that there is a commendable agreement between the calculated phonon spectra at the Γ point and the observed Raman mode frequencies, with the most intense peak at∼232 cm-1being ascribed to the A1gmode. Temperature dependent Raman measurements show that there is a significant deviation from the expected anharmonic behaviour around 165 K for the A1gmode, with anomalies being observed for several other modes as well, although to a lesser extent. Attempts are made to rationalize the observed anomalous behavior related to the hardening of the phonon modes, with parallels being drawn from metal dichalcogenide and allied systems. Similarities in the evolution of the Raman peak frequencies with temperature seem to suggest a strong signature of a subtle electronic density wave instability below 165 K in this compound.

2.
Acta Biomater ; 177: 253-264, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272198

RESUMO

Cells respond to the stiffness of their surrounding environment, but quantifying the stiffness of a fibrous matrix at the scale of a cell is complicated, due to the effects of nonlinearity and complex force transmission pathways resulting from randomness in fiber density and connections. While it is known that forces produced by individual contractile cells can stiffen the matrix, it remains unclear how simultaneous contraction of multiple cells in a fibrous matrix alters the stiffness at the scale of a cell. Here, we used computational modeling and experiments to quantify the stiffness of a random fibrous matrix embedded with multiple contracting inclusions, which mimicked the contractile forces of a cell. The results showed that when the matrix was free to contract as a result of the forces produced by the inclusions, the matrix softened rather than stiffened, which was surprising given that the contracting inclusions applied tensile forces to the matrix. Using the computational model, we identified that the underlying cause of the softening was that the majority of the fibers were under a local state of axial compression, causing buckling. We verified that this buckling-induced matrix softening was sufficient for cells to sense and respond by altering their morphology and force generation. Our findings reveal that the localized forces induced by cells do not always stiffen the matrix; rather, softening can occur in instances wherein the matrix can contract in response to the cell-generated forces. This study opens up new possibilities to investigate whether cell-induced softening contributes to maintenance of homeostatic conditions or progression of disease. STATEMENT OF SIGNIFICANCE: Mechanical interactions between cells and the surrounding matrix strongly influence cellular functions. Cell-induced forces can alter matrix properties, and much prior literature in this area focused on the influence of individual contracting cells. Cells in tissues are rarely solitary; rather, they are interspersed with neighboring cells throughout the matrix. As a result, the mechanics are complicated, leaving it unclear how the multiple contracting cells affect matrix stiffness. Here, we show that multiple contracting inclusions within a fibrous matrix can cause softening that in turn affects cell sensing and response. Our findings provide new directions to determine impacts of cell-induced softening on maintenance of tissue or progression of disease.


Assuntos
Matriz Extracelular , Fenômenos Mecânicos , Matriz Extracelular/metabolismo , Fenômenos Físicos , Pressão , Simulação por Computador
3.
J Mech Behav Biomed Mater ; 135: 105465, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36154991

RESUMO

As fibrous collagen is the most abundant protein in mammalian tissues, gels of collagen fibers have been extensively used as an extracellular matrix scaffold to study how cells sense and respond to cues from their microenvironment. Other components of native tissues, such as glycosaminoglycans like hyaluronic acid, can affect cell behavior in part by changing the mechanical properties of the collagen gel. Prior studies have quantified the effects of hyaluronic acid on the mechanical properties of collagen gels in experiments of uniform shear or compression at the macroscale. However, there remains a lack of experimental studies of how hyaluronic acid changes the mechanical properties of collagen gels at the scale of a cell. Here, we studied how addition of hyaluronic acid to gels of collagen fibers affects the local field of displacements in response to contractile loads applied on length scales similar to those of a contracting cell. Using spherical poly(N-isopropylacrylamide) particles, which contract when heated, we induced displacement in gels of collagen and collagen with hyaluronic acid. Displacement fields were quantified using a combination of confocal microscopy and digital image correlation. Results showed that hyaluronic acid suppressed the distance over which displacements propagated, suggesting that it caused the network to become more linear. Additionally, hyaluronic acid had no statistical effect on heterogeneity of the displacement fields, but it did make the gels more elastic by substantially reducing the magnitude of permanent deformations. Lastly, we examined the effect of hyaluronic acid on fiber remodeling due to localized forces and found that hyaluronic acid partially - but not fully - inhibited remodeling. This result is consistent with prior studies suggesting that fiber remodeling is associated with a phase transition resulting from an instability caused by nonlinearity of the collagen gel.


Assuntos
Colágeno , Ácido Hialurônico , Animais , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Géis , Ácido Hialurônico/farmacologia , Mamíferos , Microscopia Confocal
4.
J Chromatogr Sci ; 57(4): 291-298, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715233

RESUMO

A simple and direct gas chromatography-mass spectrometry method for routine estimation of C2 H5-alkylbenzenes (or C2-alkylbenzenes), namely, ethylbenzene and m/p- and o-xylenes in the boiling range of 80°C-400°C, including diesel range streams using deuterated ethylbenzene as internal standard has been described. Estimation of C2-alkylbenzenes in feeds and products is important for monitoring the reaction kinetics in certain secondary processes which involve conversion of low value, aromatic-rich diesel range boiling streams to produce aromatic-based petrochemical feedstocks upto xylenes. The method developed takes advantage of chromatographic separation and resolution masses of fragment ions of the compounds of interest for estimation. Linearity in estimation has been established in the range of 300 ppm to 5% (w/w) for ethylbenzene, m/p-xylenes and o-xylenes. Correlation coefficient (R2) value of 0.99 was obtained for the three compounds for calibration mixtures. Total 15 samples obtained from refineries, pilot plant for mono-aromatic enrichment studies, and commercial diesel samples were analyzed by this method for estimation of ethylbenzene, m/p- and o-xylenes content.

5.
Int J Numer Method Biomed Eng ; 29(11): 1243-66, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23873868

RESUMO

We study the numerical accuracy and computational efficiency of alternative formulations of the finite element solution procedure for the monodomain equations of cardiac electrophysiology, focusing on the interaction of spatial quadrature implementations with operator splitting and examining both nodal and Gauss quadrature methods and implementations that mix nodal storage of state variables with Gauss quadrature. We evaluate the performance of all possible combinations of 'lumped' approximations of consistent capacitance and mass matrices. Most generally, we find that quadrature schemes and lumped approximations that produce decoupled nodal ionic equations allow for the greatest computational efficiency, this being afforded through the use of asynchronous adaptive time-stepping of the ionic state variable ODEs. We identify two lumped approximation schemes that exhibit superior accuracy, rivaling that of the most expensive variationally consistent implementations. Finally, we illustrate some of the physiological consequences of discretization error in electrophysiological simulation relevant to cardiac arrhythmia and fibrillation. These results suggest caution with the use of semi-automated free-form tetrahedral and hexahedral meshing algorithms available in most commercially available meshing software, which produce nonuniform meshes having a large distribution of element sizes.


Assuntos
Simulação por Computador , Técnicas Eletrofisiológicas Cardíacas/métodos , Modelos Cardiovasculares , Algoritmos , Análise de Elementos Finitos , Coração/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...