Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(23): 235301, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32031999

RESUMO

We study the transport properties of Dirac electrons across a two-dimensional normal metal-barrier-normal metal interface in monolayer borophane. We analyse the transmission probability with variation of the width of the barrier region, the incidence energy and transverse momentum. We demonstrate that a gap exists in the transmission probability spectrum and the position of the width of the transmission gap can be tuned by the barrier strength and transverse momentum respectively. We point out the variation of the ballistic tunneling conductance as a function of the width of the barrier region and incident energy. We find that the oscillatory or decaying nature of the conductance with variation in barrier width depends upon the number of propagating and evanescent modes which are controlled by the incident energy and barrier strength. We show that the conductance as a function of incident energy drops to a minimum value when the incident energy becomes identical to the barrier height and identify that this effect is caused by the presence of evanescent modes inside the barrier. Based on these findings we propose a perfectly tunable wavevector filter for borophane. We expect our findings possess useful applications in borophane based nano-electronic devices.

2.
Bull Environ Contam Toxicol ; 101(4): 527-535, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30203177

RESUMO

Fly ash (FA), the major by-product of coal-fired thermal power plants, causes significant environmental degradation owing to its injurious heavy metal contents. Leaching of arsenic (As) from ash ponds is especially significant as As released from FA can increase As concentration of drinking water above maximum contaminant level of 10 ppb. The aim of this paper was demonstration of As bioremediation potential of indigenous As resistant bacteria present in the weathered pond ash sample. Ten isolates belonging to Bacillus, Micrococcus, Kytococcus and Staphylococcus genera were characterized. Biochemical tests showed reduction of relatively non toxic arsenate to more toxic arsenite by two strains while four strains showed oxidation of arsenite to arsenate. Two exoplolysaccharide producing strains were shown to absorb As within their biomass. Total heterotrophs versus As resistant heterotrophs counting performed showed that FA was enriched with As resistant heterotrophs. Column leaching based microcosm study revealed overall As detoxification potential of the isolated microbes.


Assuntos
Arsênio/metabolismo , Bactérias/metabolismo , Cinza de Carvão/metabolismo , Poluentes Ambientais/metabolismo , Bactérias/classificação , Biodegradação Ambiental , Resíduos Industriais , Metais Pesados , Centrais Elétricas
3.
J Phys Condens Matter ; 29(28): 285601, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28530632

RESUMO

We study transport properties of a phosphorene monolayer in the presence of single and multiple potential barriers of height U 0 and width d, using both continuum and microscopic lattice models, and show that the nature of electron transport along its armchair edge (x direction) is qualitatively different from its counterpart in both conventional two-dimensional electron gas with Schrödinger-like quasiparticles and graphene or surfaces of topological insulators hosting massless Dirac quasiparticles. We show that the transport, mediated by massive Dirac electrons, allows one to achieve collimated quasiparticle motion along x and thus makes monolayer phosphorene an ideal experimental platform for studying Klein paradox in the context of gapped Dirac materials. We study the dependence of the tunneling conductance [Formula: see text] as a function of d and U 0, and demonstrate that for a given applied voltage V its behavior changes from oscillatory to decaying function of d for a range of U 0 with finite non-zero upper and lower bounds, and provide analytical expression for these bounds within which G decays with d. We contrast such behavior of G with that of massless Dirac electrons in graphene and also with that along the zigzag edge (y direction) in phosphorene where the quasiparticles obey an effective Schrödinger equation at low energy. We also study transport through multiple barriers along x and demonstrate that these properties hold for transport through multiple barriers as well. Finally, we suggest concrete experiments which may verify our theoretical predictions.

4.
J Phys Condens Matter ; 26(32): 325602, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25054233

RESUMO

We use a perturbative momentum shell renormalization group (RG) approach to study the properties of a driven quantum system at zero temperature. To illustrate the technique, we consider a bosonic ϕ(4) theory with an arbitrary time dependent interaction parameter λ(t) = λ f(ω0t), where ω0 is the drive frequency and we derive the RG equations for the system using a Keldysh diagrammatic technique. We show that the scaling of ω0 is analogous to that of temperature for a system in thermal equilibrium and its presence provides a cutoff scale for the RG flow. We analyze the resultant RG equations, derive an analytical condition for such a drive to take the system out of the gaussian regime, and show that the onset of the non-gaussian regime occurs concomitantly with the appearance of non-perturbative mode coupling terms in the effective action of the system. We supplement the above-mentioned results by obtaining them from equations of motion of the bosons and discuss their significance for systems near critical points described by time-dependent Landau-Ginzburg theories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...