Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(29): 15896-15905, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37440690

RESUMO

Finding stable analogues of three-dimensional (3D) lead halide perovskites has motivated the exploration of an ever-expanding repertoire of two-dimensional (2D) counterparts. However, the bandgap and exciton binding energy in these 2D systems are generally considerably higher than those in 3D analogues due to size and dielectric confinement. Such quantum confinements are most prominently manifested in the extreme 2D realization in (A)mPbI4 (m = 1 or 2) series of compounds with a single inorganic layer repeat unit. Here, we explore a new A-site cation, 4,4'-azopyridine (APD), whose size and hydrogen bonding properties endow the corresponding (APD)PbI4 2D compound with the lowest bandgap and exciton binding energy of all such compounds, 2.19 eV and 48 meV, respectively. (APD)PbI4 presents the first example of the ideal Pb-I-Pb bond angle of 180°, maximizing the valence and conduction bandwidths and minimizing the electron and hole effective masses. These effects coupled with a significant increase in the dielectric constant provide an explanation for the unique bandgap and exciton binding energies in this system. Our theoretical results further reveal that the requirement of optimizing the hydrogen bonding interactions between the organic and the inorganic units provides the driving force for achieving the structural uniqueness and the associated optoelectronic properties in this system. Our preliminary investigations in characterizing photovoltaic solar cells in the presence of APD show encouraging improvements in performances and stability.

2.
J Phys Chem Lett ; 11(4): 1473-1476, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32000492

RESUMO

The attractive optoelectronic properties of MAPbI3 (MA = CH3NH3), one of the most common halide perovskites, can be complicated by its tetragonal → cubic structural phase transition just above room temperature. We show that decreasing the ambient pressure can move that phase transition by ∼40 °C (at ∼10-3 mbar). Our report also includes control experiments, which show that desorption of water or oxygen can be excluded as possible causes for the change in phase transition temperature. On the basis of diffraction data, we postulate that an optimum volume is required to initiate a T → C phase transition. The pressure-induced phase change in effect stabilizes the tetragonal phase for work around room temperature, even if some natural heating occurs.

3.
Angew Chem Int Ed Engl ; 57(36): 11603-11607, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-29995354

RESUMO

Abrupt fluorescence intermittency or blinking is long recognized to be characteristic of single nano-emitters. Extended quantum-confined nanostructures also undergo spatially heterogeneous blinking; however, there is no such precedent in dimensionally unconfined (bulk) materials. Herein, we report multi-level blinking of entire individual organo-lead bromide perovskite microcrystals (volume=0.1-3 µm3 ) under ambient conditions. Extremely high spatiotemporal correlation (>0.9) in intracrystal emission intensity fluctuations signifies effective communication amongst photogenerated carriers at distal locations (up to ca. 4 µm) within each crystal. Fused polycrystalline grains also exhibit this intriguing phenomenon, which is rationalized by correlated and efficient migration of carriers to a few transient nonradiative traps, the nature and population of which determine blinking propensity. Observation of spatiotemporally correlated emission intermittency in bulk semiconductor crystals opens the possibility of designing novel devices involving long-range (mesoscopic) electronic communication.

4.
Nanoscale ; 8(14): 7459-65, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26987744

RESUMO

The feasibility of self-saturated atomic layer deposition of Al2O3 on an organolead halide perovskite (MAPbI3-xClx) surface through a well known trimethylaluminium (TMA)-water (H2O) chemistry is studied. Though the sequential dosages of reactants form films on the perovskite surfaces, a self saturated growth is never observed. Self-saturation leads to the degradation of the material. Both experimental and density functional theory calculations are carried out for complete understanding of the growth mechanism of self-limiting Al2O3 on the perovskite surface.

5.
J Phys Chem Lett ; 6(17): 3483-9, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26291471

RESUMO

Pseudohalide thiocyanate anion (SCN(-)) has been used as a dopant in a methylammonium lead tri-iodide (MAPbI3) framework, aiming for its use as an absorber layer for photovoltaic applications. The substitution of SCN(-) pseudohalide anion, as verified using Fourier transform infrared (FT-IR) spectroscopy, results in a comprehensive effect on the optical properties of the original material. Photoluminescence measurements at room temperature reveal a significant enhancement in the emission quantum yield of MAPbI3-x(SCN)x as compared to MAPbI3, suggestive of suppression of nonradiative channels. This increased intensity is attributed to a highly edge specific emission from MAPbI3-x(SCN)x microcrystals as revealed by photoluminescence microscopy. Fluoresence lifetime imaging measurements further established contrasting carrier recombination dynamics for grain boundaries and the bulk of the doped material. Spatially resolved emission spectroscopy on individual microcrystals of MAPbI3-x(SCN)x reveals that the optical bandgap and density of states at various (local) nanodomains are also nonuniform. Surprisingly, several (local) emissive regions within MAPbI3-x(SCN)x microcrystals are found to be optically unstable under photoirradiation, and display unambiguous temporal intermittency in emission (blinking), which is extremely unusual and intriguing. We find diverse blinking behaviors for the undoped MAPbI3 crystals as well, which leads us to speculate that blinking may be a common phenomenon for most hybrid perovskite materials.


Assuntos
Compostos de Cálcio/química , Halogênios/química , Óxidos/química , Titânio/química , Cristalização , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Phys Chem Chem Phys ; 17(26): 17445-53, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26076771

RESUMO

This article demonstrates the atomic layer deposition (ALD) of tungsten nitride using tungsten hexacarbonyl [W(CO)6] and ammonia [NH3] and its use as a lithium-ion battery anode. In situ quartz crystal microbalance (QCM), ellipsometry and X-ray reflectivity (XRR) measurements are carried out to confirm the self-limiting behaviour of the deposition. A saturated growth rate of ca. 0.35 Å per ALD cycle is found within a narrow temperature window of 180-195 °C. In situ Fourier transform infrared (FTIR) vibrational spectroscopy is used to determine the reaction pathways of the surface bound species after each ALD half cycle. The elemental presence and chemical composition is determined by XPS. The as-deposited material is found to be amorphous and crystallized to h-W2N upon annealing at an elevated temperature under an ammonia atmosphere. The as-deposited materials are found to be n-type, conducting with an average carrier concentration of ca. 10(20) at room temperature. Electrochemical studies of the as-deposited films open up the possibility of this material to be used as an anode material in Li-ion batteries. The incorporation of MWCNTs as a scaffold layer further enhances the electrochemical storage capacity of the ALD grown tungsten nitride (WNx). Ex situ XRD analysis confirms the conversion based reaction mechanism of the as-grown material with Li under operation.

7.
ACS Appl Mater Interfaces ; 6(9): 6606-15, 2014 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-24641277

RESUMO

Molybdenum nitride (MoNx) thin films are deposited by atomic layer deposition (ALD) using molybdenum hexacarbonyl [Mo(CO)6] and ammonia [NH3] at varied temperatures. A relatively narrow ALD temperature window is observed. In situ quartz crystal microbalance (QCM) measurements reveal the self-limiting growth nature of the deposition that is further verified with ex situ spectroscopic ellipsometry and X-ray reflectivity (XRR) measurements. A saturated growth rate of 2 Å/cycle at 170 °C is obtained. The deposition chemistry is studied by the in situ Fourier transform infrared spectroscopy (FTIR) that investigates the surface bound reactions during each half cycle. As deposited films are amorphous as observed from X-ray diffraction (XRD) and transmission electron microscopy electron diffraction (TEM ED) studies, which get converted to hexagonal-MoN upon annealing at 400 °C under NH3 atmosphere. As grown thin films are found to have notable potential as a carbon and binder free anode material in a Li ion battery. Under half-cell configuration, a stable discharge capacity of 700 mAh g(-1) was achieved after 100 charge-discharge cycles, at a current density of 100 µA cm(-2).

8.
J Phys Chem Lett ; 5(10): 1748-53, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26270378

RESUMO

Hybrid organic-inorganic semiconducting perovskite photovoltaic cells are usually coupled with organic hole conductors. Here, we report planar, inverse CH3NH3PbI3-xClx-based cells with inorganic hole conductors. Using electrodeposited NiO as hole conductor, we have achieved a power conversion efficiency of 7.3%. The maximum VOC obtained was 935 mV with an average VOC value being 785 mV. Preliminary results for similar cells using electrodeposited CuSCN as hole conductor resulted in devices up to 3.8% in efficiency. The ability to obtain promising cells using NiO and CuSCN expands the presently rather limited range of available hole conductors for perovskite cells.

9.
J Phys Chem Lett ; 5(23): 4115-21, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26278942

RESUMO

Perovskite-based solar cells have attracted much recent research interest with efficiency approaching 20%. While various combinations of material parameters and processing conditions are attempted for improved performance, there is still a lack of understanding in terms of the basic device physics and functional parameters that control the efficiency. Here we show that perovskite-based solar cells have two universal features: an ideality factor close to two and a space-charge-limited current regime. Through detailed numerical modeling, we identify the mechanisms that lead to these universal features. Our model predictions are supported by experimental results on solar cells fabricated at five different laboratories using different materials and processing conditions. Indeed, this work unravels the fundamental operation principle of perovskite-based solar cells, suggests ways to improve the eventual performance, and serves as a benchmark to which experimental results from various laboratories can be compared.

11.
J Phys Chem B ; 110(50): 25508-13, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17166000

RESUMO

Light-induced chemically resolved electrical measurements (CREM) under controlled electrical conditions are used to study photovoltaic effects at selected regions in nanocrystalline CdSe-based films. The method, based on X-ray photoelectron spectroscopy (XPS), possesses unique capabilities for exploring charge trapping and charge transport mechanisms, combining spectrally filtered input signals with photocurrent detection and with a powerful, site-selective, photovoltage probe.

12.
J Phys Chem B ; 109(1): 182-7, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16851002

RESUMO

If a thin film (tens of nm) of CdSe quantum dots (4 nm diameter) is deposited by chemical bath deposition onto various substrates, the films, although essentially intrinsic, behave as if they were n-type with respect to charge separation. However, films deposited under certain deposition conditions on Si (both n(+)- and p(+)-type) behave as if they were p-type. In this case, we show that it is possible to switch this p-type photoresponse by either light illumination intensity or injection of electrons from an external filament. Using both surface photovoltage spectroscopy and a novel adaptation of X-ray photoelectron spectroscopy, we show how this behavior results from a Cd(OH)(2) layer adsorbed at the Si surface at the beginning of the deposition. This response is explained by a competition between a high concentration of relatively shallow hole traps in the CdSe and a lower concentration of deeper electron traps in the Cd(OH)(2). The relative occupancies of these traps determine the fields in the film and their response to external parameters.


Assuntos
Compostos de Cádmio/química , Membranas Artificiais , Pontos Quânticos , Compostos de Selênio/química , Silício/química , Propriedades de Superfície , Fatores de Tempo
13.
J Phys Chem B ; 109(15): 7214-9, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16851824

RESUMO

Chemical bath deposited films of CdSe nanocrystals (<4 nm) are shown to exhibit time-dependent spectral red shifts, caused by increasing overlap of the electron wave functions in adjacent nanocrystals. Treatment of these "aggregated" films with aqueous KCN solution results in repulsion of the wave functions due to the strongly adsorbed negatively charged cyanide and thus electronic decoupling of the physically connected nanocrystals. The previously reported band gap increase due to cyanide adsorption on nominally uncoupled nanocrystals is also described here in more detail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...