Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 5764, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388085

RESUMO

Alpha-synuclein (aSyn) has implications in pathological protein aggregations in neurodegeneration. Matrix metalloproteases (MMPs) are broad-spectrum proteases and cleave aSyn, leading to aggregation. Previous reports showed that allosteric communications between the two domains of MMP1 on collagen fibril and fibrin depend on substrates, activity, and ligands. This paper reports quantification of allostery using single molecule measurements of MMP1 dynamics on aSyn-induced aggregates by calculating Forster Resonance Energy Transfer (FRET) between two dyes attached to the catalytic and hemopexin domains of MMP1. The two domains of MMP1 prefer open conformations that are inhibited by a single point mutation E219Q of MMP1 and tetracycline, an MMP inhibitor. A two-state Poisson process describes the interdomain dynamics, where the two states and kinetic rates of interconversion between them are obtained from histograms and autocorrelations of FRET values. Since a crystal structure of aSyn-bound MMP1 is unavailable, binding poses were predicted by molecular docking of MMP1 with aSyn using ClusPro. MMP1 dynamics were simulated using predicted binding poses and compared with the experimental interdomain dynamics to identify an appropriate pose. The selected aSyn-MMP1 binding pose near aSyn residue K45 was simulated and analyzed to define conformational changes at the catalytic site. Allosteric residues in aSyn-bound MMP1 exhibiting strong correlations with the catalytic motif residues were compared with allosteric residues in free MMP1, and aSyn-specific residues were identified. The allosteric residues in aSyn-bound MMP1 are K281, T283, G292, G327, L328, E329, R337, F343, G345, N346, Y348, G353, Q354, D363, Y365, S366, S367, F368, P371, R372, V374, K375, A379, F391, A394, R399, M414, F419, V426, and C466. Shannon entropy was defined to quantify MMP1 dynamics. Virtual screening was performed against a site on selected aSyn-MMP1 binding poses, which showed that lead molecules differ between free MMP1 and substrate-bound MMP1. Also, identifying aSyn-specific allosteric residues in MMP1 enabled further selection of lead molecules. In other words, virtual screening needs to take substrates into account for potential substrate-specific control of MMP1 activity in the future. Molecular understanding of interactions between MMP1 and aSyn-induced aggregates may open up the possibility of degrading aggregates by targeting MMPs.


Assuntos
Metaloproteinase 1 da Matriz , alfa-Sinucleína , Domínio Catalítico , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Simulação de Acoplamento Molecular , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo
2.
Integr Comp Biol ; 61(6): 2095-2108, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34297089

RESUMO

The incredible complexity of biological processes across temporal and spatial scales hampers defining common underlying mechanisms driving the patterns of life. However, recent advances in sequencing, big data analysis, machine learning, and molecular dynamics simulation have renewed the hope and urgency of finding potential hidden rules of life. There currently exists no framework to develop such synoptic investigations. Some efforts aim to identify unifying rules of life across hierarchical levels of time, space, and biological organization, but not all phenomena occur across all the levels of these hierarchies. Instead of identifying the same parameters and rules across levels, we posit that each level of a temporal and spatial scale and each level of biological organization has unique parameters and rules that may or may not predict outcomes in neighboring levels. We define this neighborhood, or the set of levels, across which a rule functions as the zone of influence. Here, we introduce the zone of influence framework and explain using three examples: (a) randomness in biology, where we use a Poisson process to describe processes from protein dynamics to DNA mutations to gene expressions, (b) island biogeography, and (c) animal coloration. The zone of influence framework may enable researchers to identify which levels are worth investigating for a particular phenomenon and reframe the narrative of searching for a unifying rule of life to the investigation of how, when, and where various rules of life operate.


Assuntos
Análise Mutacional de DNA , Animais , Evolução Biológica , Aptidão Genética
3.
Front Microbiol ; 12: 598498, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584609

RESUMO

Pseudomonas aeruginosa utilizes the quorum sensing (QS) system to strategically coordinate virulence and biofilm formation. Targeting QS pathways may be a potential anti-infective approach to treat P. aeruginosa infections. In the present study, we define cephalosporins' anti-QS activity using Chromobacterium violaceum CV026 for screening and QS-regulated mutants of P. aeruginosa for validation. We quantified the effects of three cephalosporins, cefepime, ceftazidime, and ceftriaxone, on (1) pyocyanin production using spectrophotometric assay, (2) bacterial motility using agar plate assay, and (3) biofilm formation using scanning electron microscopy. We also studied isogenic QS mutant strains of PAO1 (ΔlasR,ΔrhlR,ΔpqsA, and ΔpqsR) to compare and distinguish QS-mediated effects on the motility phenotypes and bacterial growth with and without sub-MIC concentrations of antibiotics. Results showed that cephalosporins have anti-QS activity and reduce bacterial motility, pyocyanin production, and biofilm formation for CV026 and PAO1. Also, sub-MICs of cefepime increased aminoglycosides' antimicrobial activity against P. aeruginosa PAO1, suggesting the advantage of combined anti-QS and antibacterial treatment. To correlate experimentally observed anti-QS effects with the interactions between cephalosporins and QS receptors, we performed molecular docking with ligand binding sites of quorum sensing receptors using Autodock Vina. Molecular docking predicted cephalosporins' binding affinities to the ligand-binding pocket of QS receptors (CviR, LasR, and PqsR). To validate our results using an infection model, we quantified the survival rate of Caenorhabditis elegans following P. aeruginosa PAO1 challenge at concentrations less than the minimum inhibitory concentration (MIC) of antibiotics. C. elegans infected with PAO1 without antibiotics showed 0% survivability after 72 h. In contrast, PAO1-infected C. elegans showed 65 ± 5%, 58 ± 4%, and 49 ± 8% survivability after treatment with cefepime, ceftazidime, and ceftriaxone, respectively. We determined the survival rates of C. elegans infected by QS mutant strains ΔlasR (32 ± 11%), ΔrhlR (27 ± 8%), ΔpqsA (27 ± 10%), and ΔpqsR (37 ± 6%), which suggest essential role of QS system in virulence. In summary, cephalosporins at sub-MIC concentrations show anti-QS activity and enhance the antibacterial efficacy of aminoglycosides, a different class of antibiotics. Thus, cephalosporins at sub-MIC concentrations in combination with other antibiotics are potential candidates for developing therapies to combat infections caused by P. aeruginosa.

4.
Heliyon ; 7(1): e05874, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33490665

RESUMO

Research has implicated alpha-synuclein (aSyn) in pathological protein aggregation observed in almost all patients with Parkinson's disease and more than 50% of patients with Alzheimer's disease. An easy and inexpensive method of purifying aSyn and developing an in vitro model system of Lewy body formation would enhance basic biomedical research. We report aSyn purification technique that leverages the amyloidogenic property of aSyn suitable for purifying monomeric aSyn without chromatography and denaturing agents. We expressed full-length and untagged aSyn in Rosetta(DE3) pLysS and purified ~60 µg of aSyn from 500 mL culture within 24 h. After IPTG-induced expression of aSyn in E. coli, we disrupted the cells with a sonicator. We centrifuged the cell lysate in a 15 mL tube, which leads to aSyn-induced aggregation of native E. coli proteins. After removing aggregates, centrifugation in a 30 kDa cut-off filter followed by a 10 kDa cut-off filter led to purified water-soluble aSyn. The identity of aSyn was confirmed by Western blot using anti-aSyn antibody and Edman sequencing. Its mass was determined to be 14.6 kDa using a MALDI TOF-MS mass spectrometer. The majority of aSyn led to water-suspended (as opposed to precipitated) aggregation of E. coli proteins with visible fibrous structures. The broad-spectrum binding and amyloidogenic property of aSyn is thus not only useful for inexpensive aSyn production for diverse applications, but it also expands studying its possible roles in human physiology. The aggregate of E. coli proteins induced by aSyn during the purification process may serve as a Lewy body model.

5.
Sci Rep ; 10(1): 20615, 2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33244162

RESUMO

The roles of protein conformational dynamics and allostery in function are well-known. However, the roles that interdomain dynamics have in function are not entirely understood. We used matrix metalloprotease-1 (MMP1) as a model system to study the relationship between interdomain dynamics and activity because MMP1 has diverse substrates. Here we focus on fibrin, the primary component of a blood clot. Water-soluble fibrinogen, following cleavage by thrombin, self-polymerize to form water-insoluble fibrin. We studied the interdomain dynamics of MMP1 on fibrin without crosslinks using single-molecule Forster Resonance Energy Transfer (smFRET). We observed that the distance between the catalytic and hemopexin domains of MMP1 increases or decreases as the MMP1 activity increases or decreases, respectively. We modulated the activity using (1) an active site mutant (E219Q) of MMP1, (2) MMP9, another member of the MMP family that increases the activity of MMP1, and (3) tetracycline, an inhibitor of MMP1. We fitted the histograms of smFRET values to a sum of two Gaussians and the autocorrelations to an exponential and power law. We modeled the dynamics as a two-state Poisson process and calculated the kinetic rates from the histograms and autocorrelations. Activity-dependent interdomain dynamics may enable allosteric control of the MMP1 function.


Assuntos
Metaloproteinase 1 da Matriz/metabolismo , Domínios Proteicos/fisiologia , Catálise , Domínio Catalítico/fisiologia , Escherichia coli/metabolismo , Fibrinogênio/metabolismo , Hemopexina/metabolismo , Cinética
6.
Biophys J ; 119(2): 360-374, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32585130

RESUMO

An understanding of the structure-dynamics relationship is essential for understanding how a protein works. Prior research has shown that the activity of a protein correlates with intradomain dynamics occurring at picosecond to millisecond timescales. However, the correlation between interdomain dynamics and the function of a protein is poorly understood. Here, we show that communications between the catalytic and hemopexin domains of matrix metalloprotease-1 (MMP1) on type 1 collagen fibrils correlate with its activity. Using single-molecule Förster resonance energy transfer, we identified functionally relevant open conformations in which the two MMP1 domains are well separated, which were significantly absent for catalytically inactive point mutant (E219Q) of MMP1 and could be modulated by an inhibitor or an enhancer of activity. The observed relevance of open conformations resolves the debate about the roles of open and closed MMP1 structures in function. We fitted the histograms of single-molecule Förster resonance energy transfer values to a sum of two Gaussians and the autocorrelations to an exponential and power law. We used a two-state Poisson process to describe the dynamics and calculate the kinetic rates from the fit parameters. All-atom and coarse-grained simulations reproduced some of the experimental features and revealed substrate-dependent MMP1 dynamics. Our results suggest that an interdomain separation facilitates opening up the catalytic pocket so that the collagen chains come closer to the MMP1 active site. Coordination of functional conformations at different parts of MMP1 occurs via allosteric communications that can take place via interactions mediated by collagen even if the linker between the domains is absent. Modeling dynamics as a Poisson process enables connecting the picosecond timescales of molecular dynamics simulations with the millisecond timescales of single-molecule measurements. Water-soluble MMP1 interacting with water-insoluble collagen fibrils poses challenges for biochemical studies that the single-molecule tracking can overcome for other insoluble substrates. Interdomain communications are likely important for multidomain proteins.


Assuntos
Metaloproteinase 1 da Matriz , Simulação de Dinâmica Molecular , Domínio Catalítico , Cinética , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Proteínas
7.
Microsc Microanal ; 25(3): 753-761, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30853032

RESUMO

The absence of quantitative in vitro cell-extracellular matrix models represents an important bottleneck for basic research and human health. Randomness of cellular distributions provides an opportunity for the development of a quantitative in vitro model. However, quantification of the randomness of random cell distributions is still lacking. In this paper, we have imaged cellular distributions in an alginate matrix using a multiview light sheet microscope and developed quantification metrics of randomness by modeling it as a Poisson process, a process that has constant probability of occurring in space or time. We imaged fluorescently labeled human mesenchymal stem cells embedded in an alginate matrix of thickness greater than 5 mm with axial resolution, the mean full width at half maximum of the axial intensity profiles of fluorescent particles. Simulated randomness agrees well with the experiments. Quantification of distributions and validation by simulations will enable quantitative study of cell-matrix interactions in tissue models.


Assuntos
Matriz Extracelular , Imageamento Tridimensional/métodos , Microscopia/métodos , Alginatos , Humanos , Imageamento Tridimensional/instrumentação , Lasers , Luz , Células-Tronco Mesenquimais/citologia , Microscopia de Fluorescência/métodos , Tamanho da Partícula
8.
PLoS One ; 14(3): e0214411, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30913239

RESUMO

Antimicrobial biopolymers provide a biodegradable, sustainable, safe, and cheap approach to drug delivery and wound dressing to control bacterial infection and improve wound healing respectively. Here, we report a one-step method of making antimicrobial alginate polymer from sodium alginate and aqueous extract of Wakame using antibiotic aminoglycosides. Thin layer chromatography of commercially available sodium alginate and Wakame extract showed similar oligosaccharide profiles. Screening of six aminoglycosides showed that kanamycin disulfate and neomycin sulfate produces the highest amount of biopolymer; however, kanamycin disulfate produces the most malleable and form fitting biopolymer. Image texture analysis of biopolymers showed similar quantification parameters for all the six aminoglycosides. Weight of alginate polymer as a function of aminoglycoside concentration follows a growth model of prion protein, consistent with the aggregating nature of both processes. Slow release of antibiotics and the resulting zone of inhibition against E. coli DH5α were observed by agar well diffusion assay. Inexpensive method of production and slow release of antibiotics will enable diverse applications of antimicrobial alginate biopolymer reported in this paper.


Assuntos
Alginatos/química , Aminoglicosídeos/química , Anti-Infecciosos/química , Biopolímeros/química , Undaria/metabolismo , Animais , Anti-Infecciosos/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biopolímeros/farmacologia , Células COS , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Escherichia coli/efeitos dos fármacos , Canamicina/química , Temperatura de Transição
9.
PLoS One ; 14(1): e0210218, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30633757

RESUMO

Enterococcus faecalis is a major opportunistic pathogen that readily forms protective biofilms leading to chronic infections. Biofilms protect bacteria from detergent solutions, antimicrobial agents, environmental stress, and effectively make bacteria 10 to 1000-fold more resistant to antibiotic treatment. Extracellular proteins and polysaccharides are primary components of biofilms and play a key role in cell survival, microbial persistence, cellular interaction, and maturation of E. faecalis biofilms. Degradation of biofilm components by mammalian proteases is an effective antibiofilm strategy because proteases are known to degrade bacterial proteins leading to bacterial cell lysis and growth inhibition. Here, we show that human matrix metalloprotease-1 inhibits and disrupts E. faecalis biofilms. MMPs are cell-secreted zinc- and calcium-dependent proteases that degrade and regulate various structural components of the extracellular matrix. Human MMP1 is known to degrade type-1 collagen and can also cleave a wide range of substrates. We found that recombinant human MMP1 significantly inhibited and disrupted biofilms of vancomycin sensitive and vancomycin resistant E. faecalis strains. The mechanism of antibiofilm activity is speculated to be linked with bacterial growth inhibition and degradation of biofilm matrix proteins by MMP1. These findings suggest that human MMP1 can potentially be used as a potent antibiofilm agent against E. faecalis biofilms.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Metaloproteinase 1 da Matriz/farmacologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Enterococcus faecalis/fisiologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Metaloproteinase 1 da Matriz/isolamento & purificação , Metaloproteinase 1 da Matriz/uso terapêutico , Testes de Sensibilidade Microbiana , Infecções Oportunistas/tratamento farmacológico , Infecções Oportunistas/microbiologia , Proteólise/efeitos dos fármacos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Vancomicina/farmacologia
10.
Protein Expr Purif ; 148: 59-67, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29626520

RESUMO

MMP1 is an essential enzyme for tissue remodeling both in normal and pathological states. We report a method of purifying activated human MMP1 in E. coli without using urea or 4-Aminophenylmercuric acetate (APMA). Instead, a non-ionic detergent, Triton X-100, was used in the lysis buffer to solubilize MMP1 followed by the protease activities of both trypsin and MMP1 to digest E. coli proteins and activate pro-MMP1. Identity of activated MMP1 was confirmed by Western blot using anti-human MMP1 antibodies, whereas the mass was determined to be 43 kD using matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI TOF-MS). Collagen and gelatin degradation by purified MMP1 were confirmed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) of degraded FITC-labeled type-1 collagen and gelatin zymogram. Broad-spectrum protease activity of purified MMP1 was also confirmed by lysis of native E. coli proteins. Inexpensive high throughput purification of recombinant human MMP1 in E. coli will enable easier MMP1 production for diverse applications.


Assuntos
Metaloproteinase 1 da Matriz/química , Metaloproteinase 1 da Matriz/isolamento & purificação , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Colágeno/química , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Gelatina/química , Humanos , Metaloproteinase 1 da Matriz/genética , Proteólise , Proteínas Recombinantes/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Proc Natl Acad Sci U S A ; 113(30): 8436-41, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27402741

RESUMO

Fibrillar collagen, an essential structural component of the extracellular matrix, is remarkably resistant to proteolysis, requiring specialized matrix metalloproteinases (MMPs) to initiate its remodeling. In the context of native fibrils, remodeling is poorly understood; MMPs have limited access to cleavage sites and are inhibited by tension on the fibril. Here, single-molecule recordings of fluorescently labeled MMPs reveal cleavage-vulnerable binding regions arrayed periodically at ∼1-µm intervals along collagen fibrils. Binding regions remain periodic even as they migrate on the fibril, indicating a collective process of thermally activated and self-healing defect formation. An internal strain relief model involving reversible structural rearrangements quantitatively reproduces the observed spatial patterning and fluctuations of defects and provides a mechanism for tension-dependent stabilization of fibrillar collagen. This work identifies internal-strain-driven defects that may have general and widespread regulatory functions in self-assembled biological filaments.


Assuntos
Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Metaloproteinases da Matriz/metabolismo , Tendões/metabolismo , Animais , Matriz Extracelular/química , Colágenos Fibrilares/química , Metaloproteinases da Matriz/química , Fenômenos Mecânicos , Ligação Proteica , Proteólise , Ratos , Imagem Individual de Molécula/métodos , Cauda
12.
RNA ; 22(2): 175-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26683315

RESUMO

During microRNA (miRNA) biogenesis, the Microprocessor complex (MC), composed minimally of Drosha, an RNaseIII enzyme, and DGCR8, a double-stranded RNA-binding protein, cleaves the primary-miRNA (pri-miRNA) to release the pre-miRNA stem-loop structure. Size-exclusion chromatography of the MC, isolated from mammalian cells, suggested multiple copies of one or both proteins in the complex. However, the exact stoichiometry was unknown. Initial experiments suggested that DGCR8 bound pri-miRNA substrates specifically, and given that Drosha could not be bound or cross-linked to RNA, a sequential model for binding was established in which DGCR8 bound first and recruited Drosha. Therefore, many laboratories have studied DGCR8 binding to RNA in the absence of Drosha and have shown that deletion constructs of DGCR8 can multimerize in the presence of RNA. More recently, it was demonstrated that Drosha can bind pri-miRNA substrates in the absence of DGCR8, casting doubt on the sequential model of binding. In the same study, using a single-molecule photobleaching assay, fluorescent protein-tagged deletion constructs of DGCR8 and Drosha assembled into a heterotrimeric complex on RNA, comprising two DGCR8 molecules and one Drosha molecule. To determine the stoichiometry of Drosha and DGCR8 within the MC in the absence of added RNA, we also used a single-molecule photobleaching assay and confirmed the heterotrimeric model of the human MC. We demonstrate that a heterotrimeric complex is likely preformed in the absence of RNA and exists even when full-length proteins are expressed and purified from human cells, and when hAGT-derived tags are used rather than fluorescent proteins.


Assuntos
MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo , Animais , Recuperação de Fluorescência Após Fotodegradação , Corantes Fluorescentes/química , Regulação da Expressão Gênica , Células HEK293 , Humanos , MicroRNAs/genética , Conformação de Ácido Nucleico , Plasmídeos/química , Ligação Proteica , Multimerização Proteica , Proteínas de Ligação a RNA/genética , Ribonuclease III/genética , Transdução de Sinais , Coloração e Rotulagem , Transfecção
13.
Pharm Res ; 32(11): 3746-3755, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26078000

RESUMO

PURPOSE: Magnetic resonance imaging (MRI) is widely used for diagnostic imaging in preclinical studies and in clinical settings. Considering the intrinsic low sensitivity and poor specificity of standard MRI contrast agents, the enhanced delivery of MRI tracers into tumors is an important challenge to be addressed. This study was intended to investigate whether delivery of superparamagnetic iron oxide nanoparticles (SPIONs) can be enhanced by liposomal SPION formulations for either "passive" delivery into tumor via the enhanced permeability and retention (EPR) effect or "active" targeted delivery to tumor endothelium via the receptors for vascular endothelial growth factor (VEGFRs). METHODS: In vivo MRI of orthotopic MDA-MB-231 tumors was performed on a preclinical 9.4 T MRI scanner following intravenous administration of either free/non-targeted or targeted liposomal SPIONs. RESULTS: In vivo MRI study revealed that only the non-targeted liposomal formulation provided a statistically significant accumulation of SPIONs in the tumor at four hours post-injection. The EPR effect contributes to improved accumulation of liposomal SPIONs in tumors compared to the presumably more transient retention during the targeting of the tumor vasculature via VEGFRs. CONCLUSIONS: A non-targeted liposomal formulation of SPIONs could be the optimal option for MRI detection of breast tumors and for the development of therapeutic liposomes for MRI-guided therapy.


Assuntos
Meios de Contraste/química , Óxido Ferroso-Férrico/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Neoplasias Mamárias Experimentais/patologia , Imagem Molecular/métodos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Feminino , Humanos , Imuno-Histoquímica , Lipossomos , Neoplasias Mamárias Experimentais/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Tamanho da Partícula , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/uso terapêutico , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Propriedades de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Radiology ; 276(1): 191-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25734548

RESUMO

PURPOSE: To develop and compare three copper 64 ((64)Cu)-labeled antibody fragments derived from a CA6-targeting antibody (huDS6) as immuno-positron emission tomography (immuno-PET)-based companion diagnostic agents for an antibody-drug conjugate by using huDS6. MATERIALS AND METHODS: Three antibody fragments derived from huDS6 were produced, purified, conjugated to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and evaluated in the following ways: (a) the affinity of the fragments and the DOTA conjugates was measured via flow cytometry, (b) the stability of the labeled fragments was determined ex vivo in human serum over 24 hours, and (c) comparison of the in vivo imaging potential of the fragments was evaluated in mice bearing subcutaneous CA6-positive and CA6-negative xenografts by using serial PET imaging and biodistribution. Isotype controls with antilysozyme and anti-DM4 B-Fabs and blocking experiments with an excess of either B-Fab or huDS6 were used to determine the extent of the antibody fragment (64)Cu-DOTA-B-Fab binding specificity. Immunoreactivity and tracer kinetics were evaluated by using cellular uptake and 48-hour imaging experiments, respectively. Statistical analyses were performed by using t tests, one-way analysis of variance, and Wilcoxon and Mann-Whitney tests. RESULTS: The antibody fragment (64)Cu-DOTA-B-Fab was more than 95% stable after 24 hours in human serum, had an immunoreactivity of more than 70%, and allowed differentiation between CA6-positive and CA6-negative tumors in vivo as early as 6 hours after injection, with a 1.7-fold uptake ratio between tumors. Isotype and blocking studies experiments showed tracer-specific uptake in antigen-positive tumors, despite some nonspecific uptake in both tumor models. CONCLUSION: Three antibody fragments were produced and examined as potential companion diagnostic agents. (64)Cu-DOTA-B-Fab is a stable and effective immuno-PET tracer for CA6 imaging in vivo.


Assuntos
Radioisótopos de Cobre , Fragmentos de Imunoglobulinas , Tomografia por Emissão de Pósitrons/métodos , Animais , Células Cultivadas , Tratamento Farmacológico , Epitopos , Humanos , Testes Imunológicos , Camundongos , Traçadores Radioativos
16.
Phys Life Rev ; 13: 107-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25660417

RESUMO

Studying individual biomolecules at the single-molecule level has proved very insightful recently. Single-molecule experiments allow us to probe both the equilibrium and nonequilibrium properties as well as make quantitative connections with ensemble experiments and equilibrium thermodynamics. However, it is important to be careful about the analysis of single-molecule data because of the noise present and the lack of theoretical framework for processes far away from equilibrium. Biomolecular motion, whether it is free in solution, on a substrate, or under force, involves thermal fluctuations in varying degrees, which makes the motion noisy. In addition, the noise from the experimental setup makes it even more complex. The details of biologically relevant interactions, conformational dynamics, and activities are hidden in the noisy single-molecule data. As such, extracting biological insights from noisy data is still an active area of research. In this review, we will focus on analyzing both fluorescence-based and force-based single-molecule experiments and gaining biological insights at the single-molecule level. Inherently nonequilibrium nature of biological processes will be highlighted. Simulated trajectories of biomolecular diffusion will be used to compare and validate various analysis techniques.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Nanotecnologia/métodos , Física , Análise de Célula Única/métodos , Animais , Fluorescência , Humanos , Termodinâmica
17.
Biomed Opt Express ; 5(4): 1190-202, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24761300

RESUMO

The sensitivity and resolution of fluorescence-based imaging in vivo is often limited by autofluorescence and other background noise. To overcome these limitations, we have developed a wide-field background-free imaging technique based on magnetic modulation of fluorescent nanodiamond emission. Fluorescent nanodiamonds are bright, photo-stable, biocompatible nanoparticles that are promising probes for a wide range of in vitro and in vivo imaging applications. Our readily applied background-free imaging technique improves the signal-to-background ratio for in vivo imaging up to 100-fold. This technique has the potential to significantly improve and extend fluorescent nanodiamond imaging capabilities on diverse fluorescence imaging platforms.

19.
J Am Chem Soc ; 135(21): 7815-8, 2013 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581827

RESUMO

Fluorescent nanodiamonds (FNDs) emit in the near-IR and do not photobleach or photoblink. These properties make FNDs better suited for numerous imaging applications compared with commonly used fluorescence agents such as organic dyes and quantum dots. However, nanodiamonds do not form stable suspensions in aqueous buffer, are prone to aggregation, and are difficult to functionalize. Here we present a method for encapsulating nanodiamonds with silica using an innovative liposome-based encapsulation process that renders the particle surface biocompatible, stable, and readily functionalized through routine linking chemistries. Furthermore, the method selects for a desired particle size and produces a monodisperse agent. We attached biotin to the silica-coated FNDs and tracked the three-dimensional motion of a biotinylated FND tethered by a single DNA molecule with high spatial and temporal resolution.


Assuntos
Coloides/química , Nanodiamantes , Dióxido de Silício/química , DNA/química , Fluorescência , Lipossomos , Espectroscopia de Luz Próxima ao Infravermelho , Propriedades de Superfície
20.
Curr Biol ; 22(12): 1047-56, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22578418

RESUMO

BACKGROUND: Collagen, the most abundant human protein, is the principal component of the extracellular matrix and plays important roles in maintaining tissue and organ integrity. Highly resistant to proteolysis, fibrillar collagen is degraded by specific matrix metalloproteases (MMPs). Degradation of fibrillar collagen underlies processes including tissue remodeling, wound healing, and cancer metastasis. However, the mechanism of native collagen fibril degradation remains poorly understood. RESULTS: Here we present the results of high-resolution tracking of individual MMPs degrading type I collagen fibrils. MMP1 exhibits cleavage-dependent biased and hindered diffusion but spends 90% ± 3% of the time in one of at least two distinct pause states. One class of exponentially distributed pauses (class I pauses) occurs randomly along the fibril, whereas a second class of pauses (class II pauses) exhibits multistep escape kinetics and occurs periodically at intervals of 1.3 ± 0.2 µm and 1.5 ± 0.2 µm along the fibril. After these class II pauses, MMP1 moved faster and farther in one direction along the fibril, indicative of biased motion associated with cleavage. Simulations indicate that 5% ± 2% of the class II pauses result in the initiation of processive collagen degradation, which continues for bursts of 15 ± 4 consecutive cleavage events. CONCLUSIONS: These findings provide a mechanistic paradigm for type I collagen degradation by MMP1 and establish a general approach to investigate MMP-fibrillar collagen interactions. More generally, this work demonstrates the fundamental role of enzyme-substrate interactions including binding and motion in determining the activity of an enzyme on an extended substrate.


Assuntos
Colágeno Tipo I/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Modelos Biológicos , Proteólise , Animais , Difusão , Fluorescência , Cinética , Simulação de Dinâmica Molecular , Ratos , Cauda/citologia , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...