Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AMIA Annu Symp Proc ; 2023: 1017-1026, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38222329

RESUMO

As Electronic Health Record (EHR) systems increase in usage, organizations struggle to maintain and categorize clinical documentation so it can be used for clinical care and research. While prior research has often employed natural language processing techniques to categorize free text documents, there are shortcomings relative to computational scalability and the lack of key metadata within notes' text. This study presents a framework that can allow institutions to map their notes to the LOINC document ontology using a Bag of Words approach. After preliminary manual value- set mapping, an automated pipeline that leverages key dimensions of metadata from structured EHR fields aligns the notes with the dimensions of the document ontology. This framework resulted in 73.4% coverage of EHR documents, while also mapping 132 million notes in less than 2 hours; an order of magnitude more efficient than NLP based methods.


Assuntos
Registros Eletrônicos de Saúde , Logical Observation Identifiers Names and Codes , Humanos , Metadados , Documentação
2.
Comput Intell Neurosci ; 2021: 2392395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970309

RESUMO

Brain tumors are the most common and aggressive illness, with a relatively short life expectancy in their most severe form. Thus, treatment planning is an important step in improving patients' quality of life. In general, image methods such as computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound images are used to assess tumors in the brain, lung, liver, breast, prostate, and so on. X-ray images, in particular, are utilized in this study to diagnose brain tumors. This paper describes the investigation of the convolutional neural network (CNN) to identify brain tumors from X-ray images. It expedites and increases the reliability of the treatment. Because there has been a significant amount of study in this field, the presented model focuses on boosting accuracy while using a transfer learning strategy. Python and Google Colab were utilized to perform this investigation. Deep feature extraction was accomplished with the help of pretrained deep CNN models, VGG19, InceptionV3, and MobileNetV2. The classification accuracy is used to assess the performance of this paper. MobileNetV2 had the accuracy of 92%, InceptionV3 had the accuracy of 91%, and VGG19 had the accuracy of 88%. MobileNetV2 has offered the highest level of accuracy among these networks. These precisions aid in the early identification of tumors before they produce physical adverse effects such as paralysis and other impairments.


Assuntos
Neoplasias Encefálicas , Qualidade de Vida , Encéfalo , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Masculino , Redes Neurais de Computação , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...