Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 32(1): 101191, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38352271

RESUMO

Despite the implementation of lifesaving newborn screening programs and a galactose-restricted diet, many patients with classic galactosemia develop long-term debilitating neurological deficits and primary ovarian insufficiency. Previously, we showed that the administration of human GALT mRNA predominantly expressed in the GalT gene-trapped mouse liver augmented the expression of hepatic GALT activity, which decreased not only galactose-1 phosphate (gal-1P) in the liver but also peripheral tissues. Since each peripheral tissue requires distinct methods to examine the biomarker and/or GALT effect, this highlights the necessity for alternative strategies to evaluate the overall impact of therapies. In this study, we established that whole-body galactose oxidation (WBGO) as a robust, noninvasive, and specific method to assess the in vivo pharmacokinetic and pharmacodynamic parameters of two experimental gene-based therapies that aimed to restore GALT activity in a mouse model of galactosemia. Although our results illustrated the long-lasting efficacy of AAVrh10-mediated GALT gene transfer, we found that GALT mRNA therapy that targets the liver predominantly is sufficient to sustain WBGO. The latter could have important implications in the design of novel targeted therapy to ensure optimal efficacy and safety.

2.
Nat Commun ; 12(1): 3090, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035281

RESUMO

Glycogen Storage Disease 1a (GSD1a) is a rare, inherited metabolic disorder caused by deficiency of glucose 6-phosphatase (G6Pase-α). G6Pase-α is critical for maintaining interprandial euglycemia. GSD1a patients exhibit life-threatening hypoglycemia and long-term liver complications including hepatocellular adenomas (HCAs) and carcinomas (HCCs). There is no treatment for GSD1a and the current standard-of-care for managing hypoglycemia (Glycosade®/modified cornstarch) fails to prevent HCA/HCC risk. Therapeutic modalities such as enzyme replacement therapy and gene therapy are not ideal options for patients due to challenges in drug-delivery, efficacy, and safety. To develop a new treatment for GSD1a capable of addressing both the life-threatening hypoglycemia and HCA/HCC risk, we encapsulated engineered mRNAs encoding human G6Pase-α in lipid nanoparticles. We demonstrate the efficacy and safety of our approach in a preclinical murine model that phenotypically resembles the human condition, thus presenting a potential therapy that could have a significant therapeutic impact on the treatment of GSD1a.


Assuntos
Modelos Animais de Doenças , Terapia Genética/métodos , Glucose-6-Fosfatase/genética , Doença de Depósito de Glicogênio/terapia , RNA Mensageiro/genética , Animais , Linhagem Celular Tumoral , Citocinas/sangue , Citocinas/metabolismo , Glucose-6-Fosfatase/metabolismo , Glicogênio/metabolismo , Doença de Depósito de Glicogênio/genética , Doença de Depósito de Glicogênio/patologia , Células HeLa , Humanos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nanopartículas/administração & dosagem , Nanopartículas/química , RNA Mensageiro/administração & dosagem , RNA Mensageiro/química , Resultado do Tratamento , Triglicerídeos/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-32373596

RESUMO

Biological membranes are highly dynamic in their ability to orchestrate vital mechanisms including cellular protection, organelle compartmentalization, cellular biomechanics, nutrient transport, molecular/enzymatic recognition, and membrane fusion. Controlling lipid composition of different membranes allows cells to regulate their membrane characteristics, thus modifying their physical properties to permit specific protein interactions and drive structural function (membrane deformation facilitates vesicle budding and fusion) and signal transduction. Yet, how lipids control protein structure and function is still poorly understood and needs systematic investigation. In this review, we explore different in vitro membrane models and summarize our current understanding of the interplay between membrane biophysical properties and lipid-protein interaction, taken as example few proteins involved in muscular activity (dystrophin), digestion and Legionella pneumophila effector protein DrrA. The monolayer model with its movable barriers aims to mimic any membrane deformation while surface pressure modulation imitates lipid packing and membrane curvature changes. It is frequently used to investigate peripheral protein binding to the lipid headgroups. Examples of how lipid lateral pressure modifies protein interaction and organization within the membrane are presented using various biophysical techniques. Interestingly, the shear elasticity and surface viscosity of the monolayer will increase upon specific protein(s) binding, supporting the importance of such mechanical link for membrane stability. The lipid bilayer models such as vesicles are not only used to investigate direct protein binding based on the lipid nature, but more importantly to assess how local membrane curvature (vesicles with different size) influence the binding properties of a protein. Also, supported lipid bilayer model has been used widely to characterize diffusion law of lipids within the bilayer and/or protein/biomolecule binding and diffusion on the membrane. These membrane models continue to elucidate important advances regarding the dynamic properties harmonizing lipid-protein interaction.

4.
Plant J ; 85(5): 622-33, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26935252

RESUMO

Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the major lipid components of photosynthetic membranes, and hence the most abundant lipids in the biosphere. They are essential for assembly and function of the photosynthetic apparatus. In Arabidopsis, the first step of galactolipid synthesis is catalyzed by MGDG synthase 1 (MGD1), which transfers a galactosyl residue from UDP-galactose to diacylglycerol (DAG). MGD1 is a monotopic protein that is embedded in the inner envelope membrane of chloroplasts. Once produced, MGDG is transferred to the outer envelope membrane, where DGDG synthesis occurs, and to thylakoids. Here we present two crystal structures of MGD1: one unliganded and one complexed with UDP. MGD1 has a long and flexible region (approximately 50 amino acids) that is required for DAG binding. The structures reveal critical features of the MGD1 catalytic mechanism and its membrane binding mode, tested on biomimetic Langmuir monolayers, giving insights into chloroplast membrane biogenesis. The structural plasticity of MGD1, ensuring very rapid capture and utilization of DAG, and its interaction with anionic lipids, possibly driving the construction of lipoproteic clusters, are consistent with the role of this enzyme, not only in expansion of the inner envelope membrane, but also in supplying MGDG to the outer envelope and nascent thylakoid membranes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Galactolipídeos/biossíntese , Galactosiltransferases/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Biocatálise , Vias Biossintéticas/genética , Domínio Catalítico , Cristalografia por Raios X , Diglicerídeos/química , Diglicerídeos/metabolismo , Eletroforese em Gel de Poliacrilamida , Galactose/química , Galactose/metabolismo , Galactosiltransferases/química , Galactosiltransferases/genética , Membranas Intracelulares/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Difosfato de Uridina/química , Difosfato de Uridina/metabolismo , Difração de Raios X
5.
J Liposome Res ; 25(2): 122-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25222643

RESUMO

Conventional liposomes have a short life-time in blood, unless they are protected by a polymer envelope, most often polyethylene glycol. However, these stabilizing polymers frequently interfere with cellular uptake, impede liposome-membrane fusion and inhibit escape of liposome content from endosomes. To overcome such drawbacks, polymer-based systems as carriers for liposomes are currently developed. Conforming to this approach, we propose a new and convenient method for embedding small size liposomes, 30-100 nm, inside porous calcium carbonate microparticles. These microparticles served as templates for deposition of various polyelectrolytes to form a protective shell. The carbonate particles were then dissolved to yield hollow polyelectrolyte microcapsules. The main advantage of using this method for liposome encapsulation is that carbonate particles can serve as a sacrificial template for deposition of virtually any polyelectrolyte. By carefully choosing the shell composition, bioavailability of the liposomes and of the encapsulated drug can be modulated to respond to biological requirements and to improve drug delivery to the cytoplasm and avoid endosomal escape.


Assuntos
Cápsulas/química , Portadores de Fármacos/química , Eletrólitos/química , Lipossomos/química , Polímeros/química , Carbonato de Cálcio/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
6.
Biochim Biophys Acta ; 1838(10): 2698-707, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25019684

RESUMO

VIsinin-LIke Proteins (VILIPs) are a subfamily of the Neuronal Calcium Sensor (NCS) proteins, which possess both N-myristoylation and EF-hand motifs allowing for a putative 'calcium-myristoyl switch' regulation mechanism. It has previously been established that myristoyl conjugation increases the affinity of proteins for membranes, but, in many cases, a second feature such as a cluster of positively-charged residues is needed for stable membrane binding. The interaction of two members of this family, VILIP-1 and VILIP-3, with Langmuir monolayers as membrane models has been investigated in order to study the effects of both myristoylation and the highly basic region containing conserved poly-lysine residues on membrane association kinetics and binding properties. Results show that in the presence of calcium, N-myristoylation significantly increases the kinetic rate of VILIP adsorption to the membrane. Additionally, the proteins bind to negatively charged phospholipids independently of the conjugated myristate moiety. Besides the regulatory effect of calcium on the rate of binding presumably due to exposure of the myristoyl moiety ascribed to their putative 'calcium-myristoyl switch', VILIP-1 and -3 also engage specific interactions with biomimetic membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2). The presence of PIP2 increases the membrane association rates of both VILIPs. Taken together, these results show the major kinetic role of N-myristoylation for membrane binding, and highlight the critical role of specific phosphoinositide interactions for membrane association of members of the VILIP family.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Lipoilação , Membranas Artificiais , Neurocalcina/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Cálcio/química , Membrana Celular/química , Humanos , Neurocalcina/química , Fosfatos de Fosfatidilinositol/química
7.
FASEB J ; 28(7): 3114-23, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24692595

RESUMO

Mono- and digalactosyldiacylglycerol (MGDG and DGDG) are the most abundant lipids of photosynthetic membranes (thylakoids). In Arabidopsis green tissues, MGD1 is the main enzyme synthesizing MGDG. This monotopic enzyme is embedded in the inner envelope membrane of chloroplasts. DGDG synthesis occurs in the outer envelope membrane. Although the suborganellar localization of MGD1 has been determined, it is still not known how the lipid/glycolipid composition influences its binding to the membrane. The existence of a topological relationship between MGD1 and "embryonic" thylakoids is also unknown. To investigate MGD1 membrane binding, we used a Langmuir membrane model allowing the tuning of both lipid composition and packing. Surprisingly, MGD1 presents a high affinity to MGDG, its product, which maintains the enzyme bound to the membrane. This positive feedback is consistent with the low level of diacylglycerol, the substrate of MGD1, in chloroplast membranes. By contrast, MGD1 is excluded from membranes highly enriched in, or made of, pure DGDG. DGDG therefore exerts a retrocontrol, which is effective on the overall synthesis of galactolipids. Previously identified activators, phosphatidic acid and phosphatidylglycerol, also play a role on MGD1 membrane binding via electrostatic interactions, compensating the exclusion triggered by DGDG. The opposite effects of MGDG and DGDG suggest a role of these lipids on the localization of MGD1 in specific domains. Consistently, MGDG induces the self-organization of MGD1 into elongated and reticulated nanostructures scaffolding the chloroplast membrane.-Sarkis, J., Rocha, J., Maniti, O., Jouhet, J., Vié, V., Block, M. A., Breton, C., Maréchal, E., Girard-Egrot, A. The influence of lipids on MGD1 membrane binding highlights novel mechanisms for galactolipid biosynthesis regulation in chloroplasts.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Galactolipídeos/biossíntese , Galactosiltransferases/metabolismo , Membranas Intracelulares/metabolismo , Lipídeos de Membrana/metabolismo , Arabidopsis/metabolismo , Diglicerídeos/metabolismo , Galactolipídeos/metabolismo , Modelos Biológicos
8.
FASEB J ; 27(1): 359-67, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23033320

RESUMO

Dystrophin is an essential part of a membrane protein complex that provides flexible support to muscle fiber membranes. Loss of dystrophin function leads to membrane fragility and muscle-wasting disease. Given the importance of cytoskeletal interactions in strengthening the sarcolemma, we have focused on actin-binding domain 2 of human dystrophin, constituted by repeats 11 to 15 of the central domain (DYS R11-15). We previously showed that DYS R11-15 also interacts with membrane lipids. We investigated the shear elastic constant (µ) and the surface viscosity (η(s)) of Langmuir phospholipid monolayers mimicking the inner leaflet of the sarcolemma in the presence of DYS R11-15 and actin. The initial interaction of 100 nM DYS R11-15 with the monolayers slightly modifies their rheological properties. Injection of 0.125 µM filamentous actin leads to a strong increase of µ and η(s,) from 0 to 5.5 mN/m and 2.4 × 10(-4) N · s/m, respectively. These effects are specific to DYS R11-15, require filamentous actin, and depend on phospholipid nature and lateral surface pressure. These findings suggest that the central domain of dystrophin contributes significantly to the stiffness and the stability of the sarcolemma through its simultaneous interactions with the cytoskeleton and lipid membrane. This mechanical link is likely to be a major contributing factor to the shock absorber function of dystrophin and muscle sarcolemmal integrity on mechanical stress.


Assuntos
Actinas/metabolismo , Distrofina/metabolismo , Sarcolema/metabolismo , Actinas/química , Membrana Celular/metabolismo , Distrofina/química , Humanos , Reologia
9.
Eur Phys J E Soft Matter ; 35(11): 118, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23160766

RESUMO

Cell mechanisms are actively modulated by membrane dynamics. We studied the dynamics of a first-stage biomimetic system by Fluorescence Recovery After Patterned Photobleaching. Using this simple biomimetic system, constituted by α -hemolysin from Staphylococcus aureus inserted as single heptameric pore or complexes of pores in a glass-supported DMPC bilayer, we observed true diffusion behavior, with no immobile fraction. We find two situations: i) when incubation is shorter than 15 hours, the protein inserts as a heptameric pore and diffuses roughly three times more slowly than its host lipid bilayer; ii) incubation longer than 15 hours leads to the formation of larger complexes which diffuse more slowly. Our results indicate that, while the Saffman-Delbruck model adequately describes the diffusion coefficient D for small radii, D of the objects decreases as 1/R(2) for the size range explored in this study. Additionally, in the presence of inserted proteins, the gel-to-fluid transition of the supported bilayer as well as a temperature shift in the gel-to-fluid transition are observed.


Assuntos
Toxinas Bacterianas/química , Proteínas Hemolisinas/química , Bicamadas Lipídicas/química , Toxinas Bacterianas/metabolismo , Difusão , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Proteínas Hemolisinas/metabolismo , Bicamadas Lipídicas/metabolismo , Temperatura
10.
J Biol Chem ; 286(35): 30481-30491, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21712383

RESUMO

Dystrophin is essential to skeletal muscle function and confers resistance to the sarcolemma by interacting with cytoskeleton and membrane. In the present work, we characterized the behavior of dystrophin 11-15 (DYS R11-15), five spectrin-like repeats from the central domain of human dystrophin, with lipids. DYS R11-15 displays an amphiphilic character at the liquid/air interface while maintaining its secondary α-helical structure. The interaction of DYS R11-15 with small unilamellar vesicles (SUVs) depends on the lipid nature, which is not the case with large unilamellar vesicles (LUVs). In addition, switching from anionic SUVs to anionic LUVs suggests the lipid packing as a crucial factor for the interaction of protein and lipid. The monolayer model and the modulation of surface pressure aim to mimic the muscle at work (i.e. dynamic changes of muscle membrane during contraction and relaxation) (high and low surface pressure). Strikingly, the lateral pressure modifies the protein organization. Increasing the lateral pressure leads the proteins to be organized in a regular network. Nevertheless, a different protein conformation after its binding to monolayer is revealed by trypsin proteolysis. Label-free quantification by nano-LC/MS/MS allowed identification of the helices in repeats 12 and 13 involved in the interaction with anionic SUVs. These results, combined with our previous studies, indicate that DYS R11-15 constitutes the only part of dystrophin that interacts with anionic as well as zwitterionic lipids and adapts its interaction and organization depending on lipid packing and lipid nature. We provide strong experimental evidence for a physiological role of the central domain of dystrophin in sarcolemma scaffolding through modulation of lipid-protein interactions.


Assuntos
Distrofina/fisiologia , Lipídeos/química , Espectrina/química , Distrofina/química , Regulação da Expressão Gênica , Humanos , Lipossomos/química , Microscopia de Força Atômica/métodos , Modelos Moleculares , Conformação Molecular , Fosfolipídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Propriedades de Superfície , Tripsina/química
11.
Biochim Biophys Acta ; 1808(1): 106-16, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20833125

RESUMO

The K4 peptide (KKKKPLFGLFFGLF) was recently demonstrated to display good antimicrobial activities against various bacterial strains and thus represents a candidate for the treatment of multiple-drug resistant infections. In this study, we use various techniques to study K4 behaviour in different media: water, solutions of detergent micelles, phospholipid monolayers and suspension of phospholipid vesicles. First, self-assembly of the peptide in water is observed, leading to the formation of spherical objects around 10nm in diameter. The addition of micelles induces partial peptide folding to an extent depending on the charge of the detergent headgroups. The NMR structure of the peptide in the presence of SDS displays a helical character of the hydrophobic moiety, whereas only partial folding is observed in DPC micelles. This peptide is able to destabilize the organization of monolayer membranes or bilayer liposomes composed of anionic lipids. When added on small unilamellar vesicles it generates larger objects attributed to mixed lipid-peptide vesicles and aggregated vesicles. The absence of calcein leakage from liposomes, when adding K4, underlines the original mechanism of this linear amphipathic peptide. Our results emphasize the importance of the electrostatic effect for K4 folding and lipid destabilization leading to the microorganisms' death with a high selectivity for the eukaryotic cells at the MIC. Interestingly, the micrographs obtained by electronic microscopy after addition of peptide on bacteria are also consistent with the formation of mixed lipid-peptide objects. Overall, this work supports a detergent-like mechanism for the antimicrobial activity of this peptide.


Assuntos
Anti-Infecciosos/química , Detergentes/química , Peptídeos/química , Dicroísmo Circular , Fluoresceínas/química , Concentração de Íons de Hidrogênio , Lipídeos/química , Espectroscopia de Ressonância Magnética , Microscopia de Força Atômica/métodos , Microscopia Eletrônica de Transmissão/métodos , Modelos Moleculares , Conformação Molecular , Conformação Proteica , Prótons , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...