Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Radiat Res ; 58(6): 894-897, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992052

RESUMO

Laser-generated electron beams are distinguished from conventional accelerated particles by ultrashort beam pulses in the femtoseconds to picoseconds duration range, and their application may elucidate primary radiobiological effects. The aim of the present study was to determine the dose-rate effect of laser-generated ultrashort pulses of 4 MeV electron beam radiation on DNA damage and repair in human cells. The dose rate was increased via changing the pulse repetition frequency, without increasing the electron energy. The human chronic myeloid leukemia K-562 cell line was used to estimate the DNA damage and repair after irradiation, via the comet assay. A distribution analysis of the DNA damage was performed. The same mean level of initial DNA damages was observed at low (3.6 Gy/min) and high (36 Gy/min) dose-rate irradiation. In the case of low-dose-rate irradiation, the detected DNA damages were completely repairable, whereas the high-dose-rate irradiation demonstrated a lower level of reparability. The distribution analysis of initial DNA damages after high-dose-rate irradiation revealed a shift towards higher amounts of damage and a broadening in distribution. Thus, increasing the dose rate via changing the pulse frequency of ultrafast electrons leads to an increase in the complexity of DNA damages, with a consequent decrease in their reparability. Since the application of an ultrashort pulsed electron beam permits us to describe the primary radiobiological effects, it can be assumed that the observed dose-rate effect on DNA damage/repair is mainly caused by primary lesions appearing at the moment of irradiation.


Assuntos
Dano ao DNA , Reparo do DNA/efeitos da radiação , Elétrons , Ensaio Cometa , Relação Dose-Resposta à Radiação , Humanos , Células K562 , Probabilidade
2.
J Inorg Biochem ; 140: 94-103, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25086237

RESUMO

In the present study we have synthesized a novel amphiphilic porphyrin and its Ag(II) complex through modification of water-soluble porphyrinic structure in order to increase its lipophilicity and in turn pharmacological potency. New cationic non-symmetrical meso-substituted porphyrins were characterized by UV-visible, electrospray ionization mass spectrometry (ESI-MS), (1)H NMR techniques, lipophilicity (thin-layer chromatographic retention factor, Rf), and elemental analysis. The key toxicological profile (i.e. cytotoxicity and cell line- (cancer type-) specificity; genotoxicity; cell cycle effects) of amphiphilic Ag porphyrin was studied in human normal and cancer cell lines of various tissue origins and compared with its water-soluble analog. Structural modification of the molecule from water-soluble to amphiphilic resulted in a certain increase in the cytotoxicity and a decrease in cell line-specificity. Importantly, Ag(II) porphyrin showed less toxicity to normal cells and greater toxicity to their cancerous counterparts as compared to cisplatin. The amphiphilic complex was also not genotoxic and demonstrated a slight cytostatic effect via the cell cycle delay due to the prolongation of S-phase. As expected, the performed structural modification affected also the photocytotoxic activity of metal-free amphiphilic porphyrin. The ligand tested on cancer cell line revealed a dramatic (more than 70-fold) amplification of its phototoxic activity as compared to its water-soluble tetracationic metal-free analog. The compound combines low dark cytotoxicity with 5 fold stronger phototoxicity relative to Chlorin e6 and could be considered as a potential photosensitizer for further development in photodynamic therapy.


Assuntos
Antineoplásicos/farmacologia , Porfirinas/química , Prata/química , Antineoplásicos/química , Cátions , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...