Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(3): e0194012, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29543873

RESUMO

Biochemical conversion of lignocellulosic biomass to liquid fuels requires pretreatment and enzymatic hydrolysis of the biomass to produce fermentable sugars. Degradation products produced during thermochemical pretreatment, however, inhibit the microbes with regard to both ethanol yield and cell growth. In this work, we used synthetic hydrolysates (SynH) to study the inhibition of yeast fermentation by water-soluble components (WSC) isolated from lignin streams obtained after extractive ammonia pretreatment (EA). We found that SynH with 20g/L WSC mimics real hydrolysate in cell growth, sugar consumption and ethanol production. However, a long lag phase was observed in the first 48 h of fermentation of SynH, which is not observed during fermentation with the crude extraction mixture. Ethyl acetate extraction was conducted to separate phenolic compounds from other water-soluble components. These phenolic compounds play a key inhibitory role during ethanol fermentation. The most abundant compounds were identified by Liquid Chromatography followed by Mass Spectrometry (LC-MS) and Gas Chromatography followed by Mass Spectrometry (GC-MS), including coumaroyl amide, feruloyl amide and coumaroyl glycerol. Chemical genomics profiling was employed to fingerprint the gene deletion response of yeast to different groups of inhibitors in WSC and AFEX-Pretreated Corn Stover Hydrolysate (ACSH). The sensitive/resistant genes cluster patterns for different fermentation media revealed their similarities and differences with regard to degradation compounds.


Assuntos
Amônia/metabolismo , Fermentação/fisiologia , Fenol/metabolismo , Água/metabolismo , Leveduras/metabolismo , Biomassa , Cromatografia Líquida/métodos , Etanol/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Hidrólise , Lignina/metabolismo , Açúcares/metabolismo
2.
J Ind Microbiol Biotechnol ; 44(9): 1261-1272, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28536841

RESUMO

The Rapid Bioconversion with Integrated recycling Technology (RaBIT) process uses enzyme and yeast recycling to improve cellulosic ethanol production economics. The previous versions of the RaBIT process exhibited decreased xylose consumption using cell recycle for a variety of different micro-organisms. Process changes were tested in an attempt to eliminate the xylose consumption decrease. Three different RaBIT process changes were evaluated in this work including (1) shortening the fermentation time, (2) fed-batch hydrolysate addition, and (3) selective cell recycling using a settling method. Shorting the RaBIT fermentation process to 11 h and introducing fed-batch hydrolysate addition eliminated any xylose consumption decrease over ten fermentation cycles; otherwise, decreased xylose consumption was apparent by the third cell recycle event. However, partial removal of yeast cells during recycle was not economical when compared to recycling all yeast cells.


Assuntos
Técnicas de Cultura Celular por Lotes , Separação Celular , Etanol/metabolismo , Fermentação , Lignina/metabolismo , Saccharomyces cerevisiae/metabolismo , Zea mays/metabolismo , Biomassa , Contagem de Células , Etanol/economia , Etanol/provisão & distribuição , Xilose/metabolismo
3.
Biotechnol Bioeng ; 114(5): 980-989, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27888662

RESUMO

High solids loadings (>18 wt%) in enzymatic hydrolysis and fermentation are desired for lignocellulosic biofuel production at a high titer and low cost. However, sugar conversion and ethanol yield decrease with increasing solids loading. The factor(s) limiting sugar conversion at high solids loading is not clearly understood. In the present study, we investigated the effect of solids loading on simultaneous saccharification and co-fermentation (SSCF) of AFEX™ (ammonia fiber expansion) pretreated corn stover for ethanol production using a xylose fermenting strain Saccharomyces cerevisiae 424A(LNH-ST). Decreased sugar conversion and ethanol yield with increasing solids loading were also observed. End-product (ethanol) was proven to be the major cause of this issue and increased degradation products with increasing solids loading was also a cause. For the first time, we show that with in situ removal of end-product by performing SSCF aerobically, sugar conversion stopped decreasing with increasing solids loading and monomeric sugar conversion reached as high as 93% at a high solids loading of 24.9 wt%. Techno-economic analysis was employed to explore the economic possibilities of cellulosic ethanol production at high solids loadings. The results suggest that low-cost in situ removal of ethanol during SSCF would significantly improve the economics of high solids loading processes. Biotechnol. Bioeng. 2017;114: 980-989. © 2016 Wiley Periodicals, Inc.


Assuntos
Biocombustíveis , Reatores Biológicos , Etanol/metabolismo , Lignina/metabolismo , Amônia/metabolismo , Biocombustíveis/análise , Biocombustíveis/economia , Reatores Biológicos/economia , Reatores Biológicos/microbiologia , Etanol/análise , Fermentação , Glucose/metabolismo , Hidrólise , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Zea mays/química
4.
Appl Microbiol Biotechnol ; 100(16): 7349-58, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27364625

RESUMO

Apple pomace samples were evaluated for conversion to ethanol at industrial relevant conditions. Biomass degradation efficiency by commercial enzymes was evaluated at 20 % solid loading for dilute sulfuric acid, calcium oxide, and autoclave without any chemical (control) apple pomace samples. The control and calcium oxide-pretreated pomace provided similar sugar yields, while dilute sulfuric acid pretreatment resulted in reduced sugar yields. The control and calcium oxide-pretreated pomace hydrolysate were fermented to ethanol using a native Saccharomyces cerevisiae yeast strain, producing 38.8 and 36.9 g/L of ethanol, respectively. When control apple pomace sample loading was increased from 20 to 30 %, 57.5 and 50.1 g/L of glucose and fructose was produced, respectively. Lastly, we found that unhydrolyzed solids (UHS) present during fermentation had little effect on ethanol yield, as 53.6 and 53.8 g/L of ethanol were produced with and without UHS, respectively. Overall, ethanol yields were 134 g per kg of dry apple pomace. A complete process mass balance for enzyme hydrolysis and ethanol fermentation is provided in this manuscript. These results show that apple pomace is an excellent feedstock for producing ethanol that could be either used as biofuel or as beverage.


Assuntos
Biocombustíveis/microbiologia , Etanol/metabolismo , Fermentação/fisiologia , Malus/metabolismo , Saccharomyces cerevisiae/metabolismo , Bebidas , Biomassa , Compostos de Cálcio/química , Glucose/metabolismo , Óxidos/química , Ácidos Sulfúricos/química
5.
Bioresour Technol ; 205: 24-33, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26802184

RESUMO

Effects of degradation products (low molecular weight compounds produced during pretreatment) on the microbes used in the RaBIT (Rapid Bioconversion with Integrated recycling Technology) process that reduces enzyme usage up to 40% by efficient enzyme recycling were studied. Chemical genomic profiling was performed, showing no yeast response differences in hydrolysates produced during RaBIT enzymatic hydrolysis. Concentrations of degradation products in solution were quantified after different enzymatic hydrolysis cycles and fermentation cycles. Intracellular degradation product concentrations were also measured following fermentation. Degradation product concentrations in hydrolysate did not change between RaBIT enzymatic hydrolysis cycles; the cell population retained its ability to oxidize/reduce (detoxify) aldehydes over five RaBIT fermentation cycles; and degradation products accumulated within or on the cells as RaBIT fermentation cycles increased. Synthetic hydrolysate was used to confirm that pretreatment degradation products are the sole cause of decreased xylose consumption during RaBIT fermentations.


Assuntos
Biocombustíveis , Etanol/metabolismo , Fermentação , Saccharomyces cerevisiae/metabolismo , Zea mays/química , Hidrólise , Xilose/metabolismo
6.
Biotechnol Biofuels ; 7: 73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24847379

RESUMO

BACKGROUND: The Rapid Bioconversion with Integrated recycle Technology (RaBIT) process reduces capital costs, processing times, and biocatalyst cost for biochemical conversion of cellulosic biomass to biofuels by reducing total bioprocessing time (enzymatic hydrolysis plus fermentation) to 48 h, increasing biofuel productivity (g/L/h) twofold, and recycling biocatalysts (enzymes and microbes) to the next cycle. To achieve these results, RaBIT utilizes 24-h high cell density fermentations along with cell recycling to solve the slow/incomplete xylose fermentation issue, which is critical for lignocellulosic biofuel fermentations. Previous studies utilizing similar fermentation conditions showed a decrease in xylose consumption when recycling cells into the next fermentation cycle. Eliminating this decrease is critical for RaBIT process effectiveness for high cycle counts. RESULTS: Nine different engineered microbial strains (including Saccharomyces cerevisiae strains, Scheffersomyces (Pichia) stipitis strains, Zymomonas mobilis 8b, and Escherichia coli KO11) were tested under RaBIT platform fermentations to determine their suitability for this platform. Fermentation conditions were then optimized for S. cerevisiae GLBRCY128. Three different nutrient sources (corn steep liquor, yeast extract, and wheat germ) were evaluated to improve xylose consumption by recycled cells. Capacitance readings were used to accurately measure viable cell mass profiles over five cycles. CONCLUSION: The results showed that not all strains are capable of effectively performing the RaBIT process. Acceptable performance is largely correlated to the specific xylose consumption rate. Corn steep liquor was found to reduce the deleterious impacts of cell recycle and improve specific xylose consumption rates. The viable cell mass profiles indicated that reduction in specific xylose consumption rate, not a drop in viable cell mass, was the main cause for decreasing xylose consumption.

7.
Biotechnol Biofuels ; 6: 108, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23890073

RESUMO

BACKGROUND: Simultaneous saccharification and co-fermentation (SSCF) process involves enzymatic hydrolysis of pretreated lignocellulosic biomass and fermentation of glucose and xylose in one bioreactor. The optimal temperatures for enzymatic hydrolysis are higher than the standard fermentation temperature of ethanologenic Saccharomyces cerevisiae. Moreover, degradation products resulting from biomass pretreatment impair fermentation of sugars, especially xylose, and can synergize with high temperature stress. One approach to resolve both concerns is to utilize a strain background with innate tolerance to both elevated temperatures and degradation products. RESULTS: In this study, we screened a panel of 108 wild and domesticated Saccharomyces cerevisiae strains isolated from a wide range of environmental niches. One wild strain was selected based on its growth tolerance to simultaneous elevated temperature and AFEX™ (Ammonia Fiber Expansion) degradation products. After engineering the strain with two copies of the Scheffersomyces stipitis xylose reductase, xylitol dehydrogenase and xylulokinase genes, we compared the ability of this engineered strain to the benchmark 424A(LNH-ST) strain in ethanol production and xylose fermentation in standard lab medium and AFEX pretreated corn stover (ACS) hydrolysates, as well as in SSCF of ACS at different temperatures. In SSCF of 9% (w/w) glucan loading ACS at 35°C, the engineered strain showed higher cell viabilities and produced a similar amount of ethanol (51.3 g/L) compared to the benchmark 424A(LNH-ST) strain. CONCLUSION: These results validate our approach in the selection of wild Saccharomyces cerevisiae strains with thermo-tolerance and degradation products tolerance properties for lignocellulosic biofuel production. The wild and domesticated yeast strains phenotyped in this work are publically available for others to use as genetic backgrounds for fermentation of their pretreated biomass at elevated temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...