Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38963625

RESUMO

As recent geopolitical conflicts and climate change escalate, the effects of war on the atmosphere remain uncertain, in particular in the context of the recent large-scale war between Russia and Ukraine. We use satellite remote sensing techniques to establish the effects that reduced human activities in urban centers of Ukraine (Kharkiv, Donetsk, and Mariupol) have on Land Surface Temperatures (LST), Urban Heat Islands (UHI), emissions, and nighttime light. A variety of climate indicators, such as hot spots, changes in the intensity and area of the UHI, and changes in LST thresholds during 2022, are differentiated with pre-war conditions as a reference period (i.e., 2012-2022). Findings show that nighttime hot spots in 2022 for all three cities cover a smaller area than during the reference period, with a maximum decrease of 3.9% recorded for Donetsk. The largest areal decrease of nighttime UHI is recorded for Kharkiv (- 12.86%). Our results for air quality changes show a significant decrease in carbon monoxide (- 2.7%, based on the average for the three cities investigated) and an increase in Absorbing Aerosol Index (27.2%, based on the average for the three cities investigated) during the war (2022), compared to the years before the war (2019-2021). The 27.2% reduction in nighttime urban light during the first year of the war, compared to the years before the war, provides another measure of conflict-impact in the socio-economic urban environment. This study demonstrates the innovative application of satellite remote sensing to provide unique insights into the local-scale atmospheric consequences of human-related disasters, such as war. The use of high-resolution satellite data allows for the detection of subtle changes in urban climates and air quality, which are crucial for understanding the broader environmental impacts of geopolitical conflicts. Our approach not only enhances the understanding of war-related impacts on urban environments but also underscores the importance of continuous monitoring and assessment to inform policy and mitigation strategies.

2.
Environ Monit Assess ; 196(5): 474, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662125

RESUMO

Reducing emissions from deforestation and forest degradation (REDD) is a specific strategy for combating deforestation and forest degradation to alleviate the effects of climate change. In this study, the potential greenhouse gas (GHG) emission reduction resulting from the implementation of a REDD project is estimated. Changes in forest cover throughout the years 1985, 1990, 1995, 2000, 2010, 2015, and 2020 were analyzed using time-series Landsat imagery (TM, ETM + , and OLI) and a random forest algorithm. Multilayer perceptron neural networks were used to model the transition potential of the forest cover, which were then predicted via Markov chain analysis. The change detection analysis revealed two discernible patterns in forest cover dynamics. Between 1985 and 2000, a notable decrease in forest cover was seen, whereas from 2000 to 2020, it significantly increased. The results suggested that the absence of REDD implementation would result in the deforestation of approximately 199,569 hectares of forest cover between 2020 and 2050, leading to the release of 1,995,695 tCO2e of emissions into the atmosphere. However, with the implementation of REDD, these emissions would be reduced to 405,512 tCO2e, effectively preventing the release of 1,590,183 tCO2e of emissions into the upper atmosphere. This study demonstrates that the implementation of REDD projects can be an effective strategy for reducing GHG emissions and mitigating climate change in the Hyrcanian forests.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Monitoramento Ambiental , Florestas , Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Irã (Geográfico) , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos
3.
Sustain Cities Soc ; 75: 103263, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36568531

RESUMO

The increasing expansion of urban environments with associated transformation of land-cover has led to the formation of urban heat islands (UHI) in many urbanized regions worldwide. COVID-19 related environmental impacts, through reduced urban activities, is worthy of investigation as it may demonstrate human capacity to manage UHI. We aim to establish the thermal impacts associated with COVID-19 induced urban 'lockdown' from 20 March to 20 April 2020 over Tehran. Areal changes in UHI are assessed through Classification and Regression Trees (CART), measured against background synoptic scale temperature changes over the years 1950-2020. Results indicate that monthly Tmean, Tmax and Tmin values during this time were considerably lower than long-term mean values for the reference period. Although the COVID-19 initiated shutdown led to an identifiable temperature anomaly, we demonstrate that this is not a product of upper atmospheric or synoptic conditions alone. We also show that the cooling effect over Tehran was not spatially uniform, which is likely due to the complexity of land uses such as industrial as opposed to residential. Our findings provide potentially valuable insights and implications for future management of urban heat islands during extreme heat waves that pose a serious threat to human health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...