Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(9): 4799-4817, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38613388

RESUMO

Glioblastoma multiforme is a universally lethal brain tumor that largely resists current surgical and drug interventions. Despite important advancements in understanding GBM biology, the invasiveness and heterogeneity of these tumors has made it challenging to develop effective therapies. Therapeutic oligonucleotides-antisense oligonucleotides and small-interfering RNAs-are chemically modified nucleic acids that can silence gene expression in the brain. However, activity of these oligonucleotides in brain tumors remains inadequately characterized. In this study, we developed a quantitative method to differentiate oligonucleotide-induced gene silencing in orthotopic GBM xenografts from gene silencing in normal brain tissue, and used this method to test the differential silencing activity of a chemically diverse panel of oligonucleotides. We show that oligonucleotides chemically optimized for pharmacological activity in normal brain tissue do not show consistent activity in GBM xenografts. We then survey multiple advanced oligonucleotide chemistries for their activity in GBM xenografts. Attaching lipid conjugates to oligonucleotides improves silencing in GBM cells across several different lipid classes. Highly hydrophobic lipid conjugates cholesterol and docosanoic acid enhance silencing but at the cost of higher neurotoxicity. Moderately hydrophobic, unsaturated fatty acid and amphiphilic lipid conjugates still improve activity without compromising safety. These oligonucleotide conjugates show promise for treating glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Oligonucleotídeos Antissenso , RNA Interferente Pequeno , Ensaios Antitumorais Modelo de Xenoenxerto , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Animais , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Encefálicas/genética , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/uso terapêutico , Inativação Gênica , Camundongos Nus
2.
Life Sci Space Res (Amst) ; 35: 113-126, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36336357

RESUMO

Nucleic acid therapeutics are a versatile class of sequence-programmable drugs that offer a robust and clinically viable strategy to modulate expression or correct genetic defects contributing to disease. The majority of drugs currently on the market target proteins; however, proteins only represent a subset of possible disease targets. Nucleic acid therapeutics allow intuitive engagement with genome sequences providing a more direct way to target many diseases at their genetic root cause. Their clinical success depends on platform technologies which can support durable and well tolerated pharmacological activity in a given tissue. Nucleic acid drugs possess a potent combination of target specificity and adaptability required to advance drug development for many diseases. As these therapeutic technologies mature, their clinical applications can also expand access to personalized therapies for patients with rare or solo genetic diseases. Spaceflight crew members exposed to the unique hazards of spaceflight, especially those related to galactic cosmic radiation (GCR) exposure, represent another patient subset who may also benefit from nucleic acid drugs as countermeasures. In this review, we will discuss the various classes of RNA- and DNA-targeted nucleic acid drugs, provide an overview of their present-day clinical applications, and describe major strategies to improve their delivery, safety, and overall efficacy.


Assuntos
Ácidos Nucleicos , Humanos , Sistemas de Liberação de Medicamentos
3.
Genome Announc ; 5(11)2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28302782

RESUMO

Jane and Sneeze are newly isolated phages of Mycobacterium smegmatis mc2155 from Hillsborough, NJ, and Palo Verde, Costa Rica, respectively. Both are cluster G, subcluster G1 mycobacteriophages. Notable nucleotide differences exist between genomes in the right half, including the presence of mycobacteriophage mobile element 1 (MPME1) in Jane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...