Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rec ; 19(8): 1667-1692, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30835939

RESUMO

The success of organic light emitting diodes (OLED) has been witnessed by the commercialization of this technology for manufacturing the vivid and colorful displays used in our daily life now. The prospective growth of OLED technology on display industry will be optimistic. Over the last three decades, many different approaches on material and device designs have been implemented for improving the efficiency and stability of OLED devices. These efforts install main cornerstones to support the great achievement of OLED technology. However, until now, the performance and stability of blue OLEDs still have some concerns. This troublesome issue should be totally conquered before the large-scale manufactures dominated over other display technologies, particularly liquid crystal-based displays, takes place. Though significant progress has already been made to achieve high performance and long lifetime blue OLEDs, this topic still remains as one of the hot researches in OLEDs. We have been working on this area for about two decades and made some notable contributions. Consequently, in this personal account we have outlined our efforts to obtain better performing blue OLEDs by utilizing a range of emitters based on fluorescence, phosphorescence, delayed fluorescence and exciplex systems. We have also developed some novel host materials for blue OLEDs, which are worth mentioning in this account.

2.
Nat Commun ; 9(1): 3111, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082702

RESUMO

The lack of structural information impeded the access of efficient luminescence for the exciplex type thermally activated delayed fluorescence (TADF). We report here the pump-probe Step-Scan Fourier transform infrared spectra of exciplex composed of a carbazole-based electron donor (CN-Cz2) and 1,3,5-triazine-based electron acceptor (PO-T2T) codeposited as the solid film that gives intermolecular charge transfer (CT), TADF, and record-high exciplex type cyan organic light emitting diodes (external quantum efficiency: 16%). The transient infrared spectral assignment to the CT state is unambiguous due to its distinction from the local excited state of either the donor or the acceptor chromophore. Importantly, a broad absorption band centered at ~2060 cm-1 was observed and assigned to a polaron-pair absorption. Time-resolved kinetics lead us to conclude that CT excited states relax to a ground-state intermediate with a time constant of ~3 µs, followed by a structural relaxation to the original CN-Cz2:PO-T2T configuration within ~14 µs.

3.
ACS Appl Mater Interfaces ; 10(23): 19279-19304, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29613766

RESUMO

Organic materials that display thermally activated delayed fluorescence (TADF) are a striking class of functional materials that have witnessed a booming progress in recent years. In addition to pure TADF emitters achieved by the subtle manipulations of intramolecular charge transfer processes with sophisticated molecular structures, a new class of efficient TADF-based OLEDs with emitting layer formed by blending electron donor and acceptor molecules that involve intermolecular charge transfer have also been fabricated. In contrast to pure TADF materials, the exciplex-based systems can realize small Δ EST (0-0.05 eV) much more easily since the electron and hole are positioned on two different molecules, thereby giving small exchange energy. Consequently, exciplex-based OLEDs have the prospective to maximize the TADF contribution and achieve theoretical 100% internal quantum efficiency. Therefore, the challenging issue of achieving small Δ EST in organic systems could be solved. In this article, we summarize and discuss the latest and most significant developments regarding these rapidly evolving functional materials, wherein the majority of the reported exciplex forming systems are categorized into two subgroups, viz. (a) exciplex as TADF emitters and (b) those as hosts for fluorescent, phosphorescent and TADF dopants according to their structural features and applications. The working mechanisms of the direct electroluminescence from the donor/acceptor interface and the exciplex-forming systems as cohost for the realization of high efficiency OLEDs are reviewed and discussed. This article delivers a summary of the current progresses and achievements of exciplex-based researches and points out the future challenges to trigger more research endeavors to this growing field.

4.
Chempluschem ; 83(4): 239-245, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31957273

RESUMO

The development of white-light-emitting electrochemical cells (LECs) has attracted great attention owing to their numerous advantages. Recently, perovskite materials have also shown many outstanding optoelectronic properties in light absorption and emission, and hence they are suitable for serving as the color conversion layers (CCLs) in solid-state white-light-emitting diodes (LEDs). Here, white LECs were fabricated by integrating non-doped blue-green LECs with CCLs made of a single composition of perovskite nanocrystal (NCs). Moreover, the correlated color temperatures (CCTs) of the white LECs can be tuned by modifying the optical properties of the perovskite NCs, in the same way as so as the color conversion properties of CCLs are tuned, through laser scan. By controlling the laser power, scanning number, and duty cycle of the scanned grating patterns on perovskite-NC CCLs, the CCTs of the white LECs can be tuned from 2502 K to nearly 4300 K. Since this method is much different from that used with conventional CCLs, which use multiple compositions of perovskite NCs to produce white light, the inherent anion-exchange issue of perovskite NCs can be avoided.

5.
Adv Mater ; 30(5)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29218854

RESUMO

The combination of rigid acridine donor and 1,8-naphthalimide acceptor has afforded two orange-red emitters of NAI-DMAC and NAI-DPAC with high rigidity in molecular structure and strongly pretwisted charge transfer state. Endowed with high photoluminescence quantum yields (ΦPL ), distinct thermally activated delayed fluorescence (TADF) characteristics, and preferentially horizontal emitting dipole orientations, these emitters afford record-high orange-red TADF organic light-emitting diodes (OLEDs) with external quantum efficiencies of up to 21-29.2%, significantly surpassing all previously reported orange-to-red TADF OLEDs. Notably, the influence of microcavity effect is verified to support the record-high efficiency. This finding relaxes the usually stringent material requirements for effective TADF emitters by comprising smaller radiative transition rates and less than ideal ΦPL s.

6.
ACS Appl Mater Interfaces ; 8(46): 31799-31805, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27933969

RESUMO

Recently, the control of correlated color temperature (CCT) of artificial solid-state white-light sources starts to attract more attention since CTs affect human physiology and health profoundly. In this work, we proposed and demonstrated a method that can widely tune the CCTs of electroluminescence (EL) from white-light-emitting electrochemical cells (LECs) by employing plasmonic filters. These integrated on-chip plasmonic filters are composed of semicontinuous thin Ag film or Ag nanoparticles (NPs) both included in the indium tin oxide anode contact, which have different characteristics of plasmonic resonant absorptions that can tune the EL spectra of white LECs. The CCTs of EL from white LECs integrated with semicontinuous thin Ag film and randomly distributed Ag NPs are 5778 and 2350 K, respectively. A commercially available laser scanning system was used to locally thermal anneal the semicontinuous thin Ag film to form the randomly distributed Ag NPs on the scanned areas. Hence, these two kinds of filters can be integrated on the same chip of white LEC, giving more freedom to control the CCTs of white EL and more potential applications. In addition, the laser scanning system used here is quite often used in display manufactures so that our proposed method can be immediately adopted by the light-emitting diode industry.

7.
Inorg Chem ; 55(7): 3530-40, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26977717

RESUMO

This article demonstrates a series of cyclometalated Ir(III) complexes of the type [Ir(III)(C^N)2(N^N)](PF6), where C^N is 2-phenylpyridine, and N^N corresponds to the 4,4'-π-conjugated 2,2'-bipyridine ancillary ligands. All these compounds were synthesized through splitting of the binuclear dichloro-bridged complex precursor, [Ir(C^N)2(µ-Cl)]2, with the appropriate bipyridine ligands followed by the anion exchange reaction. The linear and nonlinear absorption properties of the synthesized complexes were investigated. The absorption spectra of all the title complexes exhibit a broad structureless feature in the spectral region of 350-700 nm with two bands being well-resolved in most of the cases. The structures of all the compounds were modeled in dichloromethane using the density functional theory (DFT) algorithm. The nature of electronic transitions was further comprehended on the basis of time-dependent DFT analysis, which indicates that the origins of various bands are primarily due to intraligand charge transfer transitions along with mixed-metal and ligand-centered transitions. The synthesized compounds are found to be nonemissive at room temperature because of probable nonradiative deactivation pathways of the T1 state that compete with the radiative (phosphorescence) decay modes. However, the frozen solutions of compounds Ir(MS 3) and Ir(MS 5) phosphoresce at the near-IR region, the other complexes remaining nonemissive up to 800 nm wavelength window. The two-photon absorption studies on the synthesized complexes reveal that values of the absorption cross-section are quite notable and lie in the range of 300-1000 GM in the picosecond case and 45-186 GM in the femtosecond case.

8.
J Org Chem ; 80(24): 12482-91, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26560997

RESUMO

A new series of monosubstituted styryl- and bistyryl-2,2'-bipyridine luminophores (compounds 16-23) have been synthesized via Horner-Wadsworth-Emmons reaction involving a monophosphonate and donor aromatic aldehydes. In the title chromophores, the amino donors are varied between acyclic and cyclic while the alkoxy donors are varied in terms of their number and position. The absorption maxima of these chromophores shift predominantly due to intramolecular charge transfer (ICT) between different donor and acceptor moieties. The title donor-acceptor molecules exhibit intense fluorescence in solution at room temperature, and their emissive behavior has been found to be highly sensitive to solvent polarity. The fluorescence spectra and quantum yields of all the chromophores were recorded in four different solvent media, and the chromophores 16, 17, 19, and 21 exhibit fluorescence in the solid state too. The influence of the nature and position of the donor functionalities in the conjugated backbone of the bipyridine moiety on the electronic absorption properties of the title chromophores (16-23) has been demonstrated, which has further been corroborated by DFT and TD-DFT computation both in gas phase and in solution phase. The crystal structure of compound 18 has been described as a representative member of the family (16-23).

9.
Chem Commun (Camb) ; 51(71): 13662-5, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26226072

RESUMO

A thermally activated delayed fluorescent (TADF) emitter (DMAC-TRZ) was reported either as the emitting dopant in a host or as the non-doped (neat) emitting layer to achieve high EL EQEs of up to 26.5% and 20% in OLEDs, respectively.

10.
Dalton Trans ; 41(6): 1862-6, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22167089

RESUMO

Anionic metathesis reaction between the perchlorate salt of a copper-tetraazamacrocycle complex and the tetrabutylammonium salt of Lindqvist-type isopolyoxometalates in acetonitrile leads to the formation of two new inorganic-organic hybrid solids formulated as [Cu(L)(MeCN)][W(6)O(19)] (1) and [Cu(L)(MeCN)][Mo(6)O(19)] (2). Interestingly, both ion-pair complexes crystallize in a chiral space group P2(1)2(1)2(1). Crystallographic analysis of the obtained compounds reveals the occurrence of spontaneous resolution during crystallization. Both the enantiomorphs of compound 1 have been structurally characterized, whereas the resolution of compound 2 is rather poor.

11.
J Org Chem ; 77(1): 432-44, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22059490

RESUMO

A series of 4,4'-π-conjugated-2,2'-bipyridine chromophores (MS 1-8) were synthesized, and their photophysical and thermal properties were investigated. The title "push-pull' chromophores", except MS 1, were integrated with both alkoxy and alkylamino donor functionalities that differ in their donation capabilities. The oligophenylenevinylene (OPV) chromophores MS 4-8 are associated with a π-extended backbone in which the position and the number of alkoxy donors were systematically varied. All of the studied systems possess a D-π-A-A-π-D dyad archetype in which the A-A is the central 2,2'-bipyridine acceptor core that is electronically attached with the donor termini through π-linkers. The fluorescence quantum yields of the synthesized chromophores are found to be sensitive to the molecular archetype and the solvent medium. Out of the eight fluorescent compounds reported in this article, the compound MS 5 exhibits fluorescence in the solid state also. The modulating effect of the nature, position, and number of donor functionalities on the optical properties of these classes of compounds has further been comprehended on the basis of DFT and TD-DFT computation in a solvent reaction field.


Assuntos
2,2'-Dipiridil/química , Corantes/síntese química , Corantes Fluorescentes/síntese química , Corantes/química , Computadores Moleculares , Elétrons , Fluorescência , Corantes Fluorescentes/química , Estrutura Molecular , Solventes/química , Espectrofotometria Ultravioleta
12.
Dalton Trans ; 40(12): 2954-66, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21321744

RESUMO

Three polyoxometalate based ion pair solids (1-3), in which Co(III) (d(6)), Ni(II) (d(8)) and Zn(II) (d(10)) complexes of a tetra-aza macrocycle, Me(6)-trans-[14]-diene act as the cationic moieties, have been reported. The title complexes, formulated as [Co (C(16)H(32)N(4))(Cl)(2)](2)[Mo(6)O(19)] (1), [Ni(C(16)H(32)N(4))][W(6)O(19)]·DMSO·DCM (2) and [Zn(C(16)H(32)N(4))(Cl)](2)[W(6)O(19)] (3) (C(16)H(32)N(4) = Me(6)-trans-[14]-diene), are the first crystallographic paradigms where transition metal complexes of a Schiff condensed tetra-aza macrocycle have been associated with an isopolyanion, [M(6)O(19)](2-) (M = Mo(vi) and W(vi)). Compounds 1-3 have been characterized through routine spectroscopic analyses including elemental analysis and their structures have been unambiguously determined through single crystal X-ray crystallography. The molecules of compound 1 assemble obeying P1 (#2) space symmetry, whereas those of compounds 2 and 3 follow the higher symmetrical ensemble P2(1)/c (#14). The ESR spectral studies of compounds 1-3 have revealed their diamagnetic (low-spin) nature. The last part of this article describes the electrochemical properties of the title compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...