Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Persoonia ; 51: 280-417, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38665977

RESUMO

Novel species of fungi described in this study include those from various countries as follows: Argentina, Neocamarosporium halophilum in leaf spots of Atriplex undulata. Australia, Aschersonia merianiae on scale insect (Coccoidea), Curvularia huamulaniae isolated from air, Hevansia mainiae on dead spider, Ophiocordyceps poecilometigena on Poecilometis sp. Bolivia, Lecanora menthoides on sandstone, in open semi-desert montane areas, Sticta monlueckiorum corticolous in a forest, Trichonectria epimegalosporae on apothecia of corticolous Megalospora sulphurata var. sulphurata, Trichonectria puncteliae on the thallus of Punctelia borreri. Brazil, Catenomargarita pseudocercosporicola (incl. Catenomargarita gen. nov.) hyperparasitic on Pseudocercospora fijiensis on leaves of Musa acuminata, Tulasnella restingae on protocorms and roots of Epidendrum fulgens. Bulgaria, Anthracoidea umbrosae on Carex spp. Croatia, Hymenoscyphus radicis from surface-sterilised, asymptomatic roots of Microthlaspi erraticum, Orbilia multiserpentina on wood of decorticated branches of Quercus pubescens. France, Calosporella punctatispora on dead corticated twigs of Aceropalus. French West Indies (Martinique), Eutypella lechatii on dead corticated palm stem. Germany, Arrhenia alcalinophila on loamy soil. Iceland, Cistella blauvikensis on dead grass (Poaceae). India, Fulvifomes maritimus on living Peltophorum pterocarpum, Fulvifomes natarajanii on dead wood of Prosopis juliflora, Fulvifomes subazonatus on trunk of Azadirachta indica, Macrolepiota bharadwajii on moist soil near the forest, Narcissea delicata on decaying elephant dung, Paramyrothecium indicum on living leaves of Hibiscus hispidissimus, Trichoglossum syamviswanathii on moist soil near the base of a bamboo plantation. Iran, Vacuiphoma astragalicola from stem canker of Astragalus sarcocolla. Malaysia, Neoeriomycopsis fissistigmae (incl. Neoeriomycopsidaceae fam. nov.) on leaf spots on flower Fissistigma sp. Namibia, Exophiala lichenicola lichenicolous on Acarospora cf. luederitzensis. Netherlands, Entoloma occultatum on soil, Extremus caricis on dead leaves of Carex sp., Inocybe pseudomytiliodora on loamy soil. Norway, Inocybe guldeniae on calcareous soil, Inocybe rupestroides on gravelly soil. Pakistan, Hymenagaricus brunneodiscus on soil. Philippines, Ophiocordyceps philippinensis parasitic on Asilus sp. Poland, Hawksworthiomyces ciconiae isolated from Ciconia ciconia nest, Plectosphaerella vigrensis from leaf spots on Impatiens noli-tangere, Xenoramularia epitaxicola from sooty mould community on Taxus baccata. Portugal, Inocybe dagamae on clay soil. Saudi Arabia, Diaporthe jazanensis on branches of Coffea arabica. South Africa, Alternaria moraeae on dead leaves of Moraea sp., Bonitomyces buffels-kloofinus (incl. Bonitomyces gen. nov.) on dead twigs of unknown tree, Constrictochalara koukolii on living leaves of Itea rhamnoides colonised by a Meliola sp., Cylindromonium lichenophilum on Parmelina tiliacea, Gamszarella buffelskloofina (incl. Gamszarella gen. nov.) on dead insect, Isthmosporiella africana (incl. Isthmosporiella gen. nov.) on dead twigs of unknown tree, Nothoeucasphaeria buffelskloofina (incl. Nothoeucasphaeria gen. nov.), on dead twigs of unknown tree, Nothomicrothyrium beaucarneae (incl. Nothomicrothyrium gen. nov.) on dead leaves of Beaucarnea stricta, Paramycosphaerella proteae on living leaves of Protea caffra, Querciphoma foliicola on leaf litter, Rachicladosporium conostomii on dead twigs of Conostomium natalense var. glabrum, Rhamphoriopsis synnematosa on dead twig of unknown tree, Waltergamsia mpumalanga on dead leaves of unknown tree. Spain, Amanita fulvogrisea on limestone soil, in mixed forest, Amanita herculis in open Quercus forest, Vuilleminia beltraniae on Cistus symphytifolius. Sweden, Pachyella pulchella on decaying wood on sand-silt riverbank. Thailand, Deniquelata cassiae on dead stem of Cassia fistula, Stomiopeltis thailandica on dead twigs of Magnolia champaca. Ukraine, Circinaria podoliana on natural limestone outcrops, Neonematogonum carpinicola (incl. Neonematogonum gen. nov.) on dead branches of Carpinus betulus. USA, Exophiala wilsonii water from cooling tower, Hygrophorus aesculeticola on soil in mixed forest, and Neocelosporium aereum from air in a house attic. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Costa MM, Kandemir H, et al. 2023. Fungal Planet description sheets: 1550-1613. Persoonia 51: 280-417. doi: 10.3767/persoonia.2023.51.08.

2.
Plant Dis ; 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36475743

RESUMO

Chrysanthemum morifolium L. is an important flower crop grown in different parts of Karnataka for its striking cut flowers and international market value. During a field survey (Mysore district, Karnataka, February, 2022), chrysanthemum fields were found infected with foot rot disease. The presence of white mycelial structures with sclerotia were recorded near the stem-soil interface. The disease incidence ranged 10-12% measured in an area of approximately 10 hectares. The infected plants showed quick wilt, yellowing and toppling of the entire plant. Infected plants from Doddamaragowdanahally and Rayanahally (n=15) were collected and associated fungal pathogen isolated after surface sterilization with NaOCl (1%) on potato dextrose agar (PDA) amended with chloramphenicol (50 mg/L). Fungal mycelia developed from the infected tissues were inoculated on to fresh PDA plates to obtained pure cultures for further identification. Fungal colonies with dense, aerial whitish-cottony mycelia with uniformly globoid sclerotia (0.284.2 mm) were observed after 15 days of incubation (28 ± 2°C). Sclerotia were white in the beginning and turned brown at maturity. The average number of sclerotia produced per plate ranged from 240 to >480 (n = 10). To further to confirm the identity of the isolates, two representative isolates (CmSr1 and CmSr2) was subjected to molecular identification based on ITS-rDNA sequences. Briefly, genomic DNA was isolated from 12 day old cultures using the CTAB method and ITS-rDNA was amplified using ITS1-ITS4 primers (White et al., 1990). An expected amplicon of >650 bp (ITS) was obtained and later sequenced from both the directions. The consensus sequences were analysed through nBLAST search which revealed that 100% sequence similarity with reference sequences of Athelia rolfsii (S. rolfsii) from GenBank database (MT127465, MN974137, KC292637; identity 656/656; 0 gaps). A phylogenetic tree obtained by the neighbor-joining method using MEGAX shared a common clade with the reference sequences retrieved and computed, thus confirming the identification based on sequence analysis and molecular phylogeny. The representative sequence of A. rolfsii isolates CmSr1 and CmSr2 isolates deposited in GenBank with Accession nos. ON456153 and ON456154, respectively. Based on etiology, morphological, cultural and molecular data the pathogen was identified as Athelia rolfsii (Curzi) Tu & Kimbrough (Syn: Sclerotium rolfsii Sacc.) (Mordue, 1974; Mahadevakumar et al., 2016, 2018). Plants (n=60) were inoculated with sclerotial bodies (2 sclerotia/plant) near stem soil interface under green house and covered with polythene bags (at 27 ± 2°C and 80% RH). Non-inoculated plants (n=20) served as controls. The development of foot rot disease was observed eight days after inoculation. A total of 48 plants showed the foot rot symptoms and 12 inoculated plants and control plants remained healthy. The identity of the fungus was confirmed by morphological and cultural characters after re-isolation. C. morifolium is an important flower crop in Karnataka. S. rolfsii is known to be associated with blight and collar rot of Chrysanthemum spp. from Kerala (Beena et al., 2002) but no species (host) identity provided. Therefore, to the best of our knowledge, this is the first report of foot rot disease caused by Athelia rolfsii on C. morifolium in India. Early diagnosis of this disease will help the farmers to adopt suitable management practices to avoid loss.

3.
Carbohydr Res ; 510: 108459, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34700217

RESUMO

Long-chain chitooligosaccharides (COS) with degree of polymerization (DP) more than 4 are known to have potential biological activities. A hyper-transglycosylating mutant of an endo-chitinase from Serratia proteamaculans (SpChiD-Y28A) was used to synthesize COS with DP6 and DP7 using COS DP5 as substrate. Purified COS with DP5-7 were tested to elicit the defense response in rice seedlings. Among the COS used, DP7 strongly induced oxidative burst response as well as peroxidase, and phenylalanine ammonia lyase activites. A few selected marker genes in salicylic acid (SA)- and jasmonic acid-dependent pathways were evaluated by real-time PCR. The expression levels of pathogenesis-related (PR) genes PR1a and PR10 and defense response genes (chitinase1, peroxidase and ß -1,3-glucanase) were up regulated upon COS treatment in rice seedlings. The DP7 induced Phenylalanine ammonia lyase and Isochorismate synthase 1 genes, with concomitant increase of Mitogen-activated protein kinase 6 and WRKY45 transcription factor genes indicated the possible role of phosphorylation in the transmission of a signal to induce SA-mediated defense response in rice.


Assuntos
Quitosana/metabolismo , Oligossacarídeos/metabolismo , Oryza/metabolismo , Plântula/metabolismo , Quitosana/química , Glicosilação , Oligossacarídeos/química , Oryza/química , Plântula/química , Serratia/química , Serratia/metabolismo
4.
Crit Rev Biotechnol ; 35(1): 29-43, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24020506

RESUMO

Plants have evolved mechanisms to recognize a wide range of pathogen-derived molecules and to express induced resistance against pathogen attack. Exploitation of induced resistance, by application of novel bioactive elicitors, is an attractive alternative for crop protection. Chitooligosaccharide (COS) elicitors, released during plant fungal interactions, induce plant defenses upon recognition. Detailed analyses of structure/function relationships of bioactive chitosans as well as recent progress towards understanding the mechanism of COS sensing in plants through the identification and characterization of their cognate receptors have generated fresh impetus for approaches that would induce innate immunity in plants. These progresses combined with the application of chitin/chitosan/COS in disease management are reviewed here. In considering the field application of COS, however, efficient and large-scale production of desired COS is a challenging task. The available methods, including chemical or enzymatic hydrolysis and chemical or biotechnological synthesis to produce COS, are also reviewed.


Assuntos
Quitina/análogos & derivados , Plantas/imunologia , Biotecnologia/métodos , Parede Celular/metabolismo , Quitina/metabolismo , Quitosana , Fungos/metabolismo , Fungos/fisiologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Oligossacarídeos , Plantas/microbiologia
5.
Bioresour Technol ; 112: 261-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22406064

RESUMO

Serratia proteamaculans 568 genome revealed the presence of four family 18 chitinases (Sp ChiA, Sp ChiB, Sp ChiC, and Sp ChiD). Heterologous expression and characterization of Sp ChiA, Sp ChiB, and Sp ChiC showed that these enzymes were optimally active at pH 6.0-7.0, and 40°C. The three Sp chitinases displayed highest activity/binding to ß-chitin and showed broad range of substrate specificities, and released dimer as major end product from oligomeric and polymeric substrates. Longer incubation was required for hydrolysis of trimer for the three Sp chitinases. The three Sp chitinases released up to tetramers from colloidal chitin substrate. Sp ChiA and Sp ChiB were processive chitinases, while Sp ChiC was a non-processive chitinase. Based on the known structures of ChiA and ChiB from S. marcescens, 3D models of Sp ChiA and Sp ChiB were generated.


Assuntos
Quitina/metabolismo , Quitinases/metabolismo , Endófitos/enzimologia , Oligossacarídeos/metabolismo , Serratia/enzimologia , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Coloides , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Solubilidade , Especificidade por Substrato , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...