Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 38(11): 212, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053338

RESUMO

Rice straw decomposition is an attractive solution to open-field burning but the traditional method has slow kinetics and takes 60-90 days to obtain mature compost. In this study, we propose to boost up the decomposition process by addition of a novel microbial consortium rich in lignocellulolytic microbes. C: N ratio of the compost reached 11.69% and degradation efficiency of cellulose and hemicellulose was found to be 64 and 87% respectively within 25 days. Lignocellulolytic activity of the microbial consortium was confirmed by plate and activity assay. These parameters clearly indicated that a mature compost was obtained in 25 days. The 16S rRNA gene amplicon sequencing and functional analysis of predicted genes indicated amino acid and carbohydrate metabolism as the major metabolic pathway during composting. The tertiary level of functional analysis revealed the major metabolic pathways in the bacterial communities as pentose phosphate pathway, glycolysis and tricarboxylic acid cycle.


Assuntos
Compostagem , Microbiota , Oryza , Consórcios Microbianos/genética , Oryza/microbiologia , RNA Ribossômico 16S/genética , Solo/química
2.
3 Biotech ; 11(8): 378, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34367870

RESUMO

The need for alternative source of fuel has demanded the cultivation of 3rd generation feedstock which includes microalgae, seaweed and cyanobacteria. These phototrophic organisms are unique in a sense that they utilise natural sources like sunlight, water and CO2 for their growth and metabolism thereby producing diverse products that can be processed to produce biofuel, biochemical, nutraceuticals, feed, biofertilizer and other value added products. But due to low biomass productivity and high harvesting cost, microalgae-based production have not received much attention. Therefore, this review provides the state of the art of the microalgae based biorefinery approach to define an economical and sustainable process. The three major segments that need to be considered for economic microalgae biorefinery is low cost nutrient source, efficient harvesting methods and production of by-products with high market value. This review has outlined the use of various wastewater as nutrient source for simultaneous biomass production and bioremediation. Further, it has highlighted the common harvesting methods used for microalgae and also described various products from both raw biomass and delipidified microalgae residues in order to establish a sustainable, economical microalgae biorefinery with a touch of circular bioeconomy. This review has also discussed various challenges to be considered followed by a techno-economic analysis of the microalgae based biorefinery model.

3.
Bioresour Technol ; 284: 168-177, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30933825

RESUMO

This study reports engineering of a hypertransformable variant of C. pasteurianum for bioconversion of glycerol into hydrogen (H2). A functional glycerol-triggered hydrogen pathway was engineered based on two approaches: (1) increasing product yield by overexpression of immediate enzyme catalyzing H2 production, (2) increasing substrate uptake by overexpression of enzymes involved in glycerol utilization. The first strategy aimed at overexpression of hydA gene encoding hydrogenase, and the second one, through combination of overexpression of dhaD1 and dhaK genes encoding glycerol dehydrogenase and dihydroxyacetone kinase. These genetic manipulations resulted in two recombinant strains (hydA++/dhaD1K++) capable of producing 97% H2 (v/v), with yields of 1.1 mol H2/mol glycerol in hydA overexpressed strain, and 0.93 mol H2/mol glycerol in dhaD1K overexpressed strain, which was 1.5 fold higher than wild type. Among two strains, dhaD1K++ consumed more glycerol than hydA++ which proves that overexpression of glycerol enzymes has enhanced glycerol intake rate.


Assuntos
Clostridium/enzimologia , Glicerol/metabolismo , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Desidrogenase do Álcool de Açúcar/metabolismo , Hidrogenase/genética , Desidrogenase do Álcool de Açúcar/genética
4.
Bioresour Technol ; 242: 169-177, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28456454

RESUMO

The present study has attempted to get insight into ultrasound induced enhancement in biohydrogen production from glycerol fermentation using metabolic flux analysis (MFA). A pseudo steady state metabolic flux network model was constructed and analyzed using experimentally measured glycerol uptake rate and fluxes of four metabolites, viz. acetate, butyrate, succinate and 1,3-PDO. Glycerol consumption increased by ∼50% under sonication. Biohydrogen yield showed marked rise of ∼40% with application of ultrasound. Butyrate and 1,3-PDO were the major products of glycerol metabolism. Sonication had major influence on carbon fluxes at the acetyl-CoA node. MFA results revealed enhanced flux towards butyrate under sonication, which was manifested in higher butyrate to acetate (B/A) ratio in products and greater H2 generation. Biohydrogen production was also a microbial growth associated process. Finally, two theoretical alternatives for further enhancement of biohydrogen production were assessed with MFA, viz. enhancement of glycerol uptake and blocking of butyrate pathway.


Assuntos
Clostridium , Glicerol , Acetilcoenzima A , Fermentação , Hidrogênio
5.
Ultrason Sonochem ; 26: 249-256, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25813894

RESUMO

This paper presents investigations into mechanism of ultrasound assisted bioethanol synthesis using Parthenium hysterophorus biomass through simultaneous saccharification and fermentation (SSF) mode. Approach of coupling experimental results to mathematical model for SSF using Genetic Algorithm based optimization has been adopted. Comparison of model parameters for experiments with mechanical shaking and sonication (10% duty cycle) give an interesting mechanistic account of influence of ultrasound on SSF system. A 4-fold rise in ethanol and cell mass productivity is seen with ultrasound. The analysis reveals following facets of influence of ultrasound on SSF: increase in Monod constant for glucose for cell growth, maximal specific growth rate and inhibition constant of cell growth by glucose and reduction in specific cell death rate. Values of inhibition constant of cell growth by ethanol (K3E), and constants for growth associated (a) and non-growth associated (b) ethanol production remained unaltered with sonication. Beneficial effects of ultrasound are attributed to enhanced cellulose hydrolysis, enhanced trans-membrane transport of substrate and products as well as dilution of the toxic substances due to micro-convection induced by ultrasound. Intrinsic physiological functioning of cells remained unaffected by ultrasound as indicated by unaltered values of K3E, a and b.


Assuntos
Asteraceae/química , Biotecnologia/métodos , Metabolismo dos Carboidratos , Etanol/metabolismo , Fermentação , Sonicação , Biomassa , Sobrevivência Celular , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
6.
Bioresour Technol ; 188: 287-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25555927

RESUMO

This study presents mechanistic investigations in ultrasound-assisted bioethanol fermentation using Parthenium hysterophorus biomass. Ultrasound (35 kHz, 10% duty cycle) has been used for sonication. Experimental results were fitted to mathematical model; the kinetic and physiological parameters in the model were obtained using Genetic Algorithm (GA) based optimization. In control experiments (mechanical shaking), maximum ethanol titer of 10.93 g/L and cell mass concentration of 5.26 g/L was obtained after 18 h. In test experiments (mechanical shaking and intermittent sonication), ethanol titer of 12.14 g/L and cell mass concentration of 5.7 g/L was obtained in 10h. This indicated ∼ 2 × enhanced productivity of ethanol and cell mass with sonication. Trends in model parameters obtained after fitting of model to experimental data essentially revealed that beneficial influence of ultrasound on fermentation is a manifestation of enhanced trans-membrane transportation and dilution of toxic substances due to strong micro-convection induced by ultrasound.


Assuntos
Asteraceae/química , Biocombustíveis , Biomassa , Etanol/química , Fermentação , Algoritmos , Aspergillus niger/enzimologia , Bacillus/enzimologia , Carboximetilcelulose Sódica/química , Microbiologia Industrial , Cinética , Modelos Teóricos , Saccharomyces cerevisiae/enzimologia , Sonicação , Ultrassom , beta-Glucosidase/química
7.
Antimicrob Agents Chemother ; 59(1): 15-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25313212

RESUMO

Hypericin, a natural compound from Hypericum perforatum (St. John's wort), has been identified as a specific inhibitor of Leishmania donovani spermidine synthase (LdSS) using integrated computational and biochemical approaches. Hypericin showed in vitro inhibition of recombinant LdSS enzyme activity. The in vivo estimation of spermidine levels in Leishmania promastigotes after hypericin treatment showed significant decreases in the spermidine pools of the parasites, indicating target specificity of the inhibitor molecule. The inhibitor, hypericin, showed significant antileishmanial activity, and the mode of death showed necrosis-like features. Further, decreased trypanothione levels and increased glutathione levels with elevated reactive oxygen species (ROS) levels were observed after hypericin treatment. Supplementation with trypanothione in the medium with hypericin treatment restored in vivo trypanothione levels and ROS levels but could not prevent necrosis-like death of the parasites. However, supplementation with spermidine in the medium with hypericin treatment restored in vivo spermidine levels and parasite death was prevented to a large extent. The data overall suggest that the parasite death due to spermidine starvation as a result of LdSS inhibition is not related to elevated levels of reactive oxygen species. This suggests the involvement of spermidine in processes other than redox metabolism in Leishmania parasites. Moreover, the work provides a novel scaffold, i.e., hypericin, as a potent antileishmanial molecule.


Assuntos
Inibidores Enzimáticos/farmacologia , Leishmania donovani/efeitos dos fármacos , Perileno/análogos & derivados , Espermidina Sintase/antagonistas & inibidores , Espermidina/metabolismo , Animais , Antracenos , Antiprotozoários/farmacologia , Glutationa/análogos & derivados , Glutationa/metabolismo , Glutationa/farmacologia , Leishmania donovani/metabolismo , Macrófagos/efeitos dos fármacos , Oxirredução , Perileno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Espermidina/análogos & derivados , Espermidina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...