Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10780, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734791

RESUMO

Nanotechnology is rapidly becoming more and more important in today's technological world as the need for industry increases with human well-being. In this study, we synthesized SnO2 nanoparticles (NPs) using an environmentally friendly method or green method from Croton macrostachyus leaf extract, leading to the transformation of UV absorbance to visible absorbance by reducing the band gap energy. The products underwent UV, FTIR, XRD, SEM, EDX, XPS, BET, and DLS for characterization. Characterization via UV-Vis spectroscopy confirmed the shift in absorbance towards the visible spectrum, indicating the potential for enhanced photocatalytic activity under visible light irradiation. The energy band gap for as-synthesized nanoparticles was 3.03 eV, 2.71 eV, 2.61 eV, and 2.41 eV for the 1:1, 1:2, 1:3, and 1:4 sample ratios, respectively. The average crystal size of 32.18 nm and very fine flakes with tiny agglomerate structures of nanoparticles was obtained. The photocatalytic activity of the green-synthesized SnO2 nanoparticles was explored under visible light irradiation for the degradation of rhodamine B (RhB) and methylene blue (MB), which were widespread fabric pollutants. It was finally confirmed that the prepared NPs were actively used for photocatalytic degradation. Our results suggest the promising application of these green-synthesized SnO2 NPs as efficient photocatalysts for environmental remediation with low energy consumption compared to other light-driven processes. The radical scavenging experiment proved that hydroxyl radicals (_OH) are the predominant species in the reaction kinetics of both pollutant dyes under visible light degradation.

2.
Biomacromolecules ; 25(1): 104-118, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38051745

RESUMO

Haloperoxidases represent an important class of enzymes that nature adopts as a defense mechanism to combat the colonial buildup of microorganisms on surfaces, commonly known as biofouling. Subsequently, there has been tremendous focus on the development of artificial haloperoxidase mimics that can catalyze the oxidation of X- (halide ion) in the presence of H2O2 to form HOX. The natural intermediate HOX disrupts the bacterial quorum sensing, thus preventing biofilm formation. Herein, we report a simple method for the formation of supramolecular hydrogels through the self-assembly of Keggin-structured polyoxometalates, phosphotungstic acid, and silicotungstic acid with the small biomolecule guanosine monophosphate (GMP) in an aqueous medium. The polyoxometalate-GMP hydrogels that contained highly entangled nanofibers were mechanically robust and showed thixotropic properties. The gelation of the polyoxometalates with GMP not only rendered manifold enhancement in biocompatibility but also the fibril network in the hydrogel provided high water wettability and the polyoxometalates acted as an efficient haloperoxidase mimic to trigger oxidative iodination, as demonstrated by a haloperoxidase assay. The antifouling activity of the phosphotungstic acid-GMP hydrogel was demonstrated against both Gram-positive and Gram-negative bacteria, which showed enhanced antibacterial performance of the hydrogel as compared to the polyoxometalate alone. We envision that the polyoxometalate-GMP hydrogels may facilitate mechanically robust coatings in a simple pathway that can be useful for antifouling applications.


Assuntos
Antibacterianos , Hidrogéis , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Guanosina Monofosfato , Peróxido de Hidrogênio , Ácido Fosfotúngstico , Bactérias Gram-Negativas , Bactérias Gram-Positivas
3.
ACS Appl Bio Mater ; 6(11): 5018-5029, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37914190

RESUMO

Self-assembled metal-ion cross-linked multifunctional hydrogels are gaining a lot of attention in the fields of biomedical and biocatalysis. Herein, we report a heat-triggered metallogel that was spontaneously formed by the self-assembly of adenosine 5'-monophosphate (AMP) and cobalt chloride, accompanied by a color transition depicting an octahedral to tetrahedral transition at high temperature. The hydrogel shows excellent stability in a wide pH window from 1 to 12. The metallogel is being exploited as a multienzyme mimic, exhibiting pH-responsive catalase and peroxidase activity. Whereas catalase mimicking activity was demonstrated by the hydrogel under neutral and basic conditions, it shows peroxidase mimicking activity in an acidic medium. The multifunctionality of the synthesized metallogel was further demonstrated by phenoxazinone synthase-like activities. Owing to its catalase-mimicking activity, the metallogel could effectively reduce the oxidative stress produced in cells due to excess hydrogen peroxide by degrading H2O2 to O2 and H2O under physiological conditions. The biocompatible metallogel could prevent cell apoptosis by scavenging reactive oxygen species. A green and simple synthetic strategy utilizing commonly available biomolecules makes this metallogel highly attractive for catalytic and biomedical applications.


Assuntos
Hidrogéis , Peróxido de Hidrogênio , Catalase , Cobalto , Concentração de Íons de Hidrogênio
4.
Chemistry ; 29(36): e202300942, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37057744

RESUMO

A series of NIR absorbing and emitting, naphthobipyrrole derived BODIPY dyes are reported. These dyes possess different functional groups viz. -CHO, -CN, -NO2 , -Br and Ph at its α,α'-positions. All the derivatives were characterized thoroughly via various spectroscopic means as well as single-crystal X-ray structural analyses. Impacts of functionalization on its photophysical properties as well as photostability were evaluated. For instance, incorporation of the phenyl moieties at the α, α'-positions by Suzuki coupling of the dibromo-derivative 4 with phenyl boronic acid led to substantial bathochromic shift in absorption (762 vs 727 nm) and emission (778 vs 744 nm) relative to the unsubstituted parent dye VI. Theoretical calculations have been performed by ground state optimization to evaluate the electronic transitions which supports experimental observation.

5.
Chem Sci ; 13(24): 7276-7282, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35799810

RESUMO

A fully conjugated cryptand-like bicyclic porphyrinoid ligand 4, incorporating three carbazole linkages and four dipyrrin moieties, was prepared via the acid-catalysed condensation of an extended 2,2'-bipyrrole analogue containing a central carbazole moiety and 3,4-diethyl-2,5-diformylpyrrole in 79% isolated yield. This new cryptand-like system acts as an effective ligand and allows for complexation of BF2 (boron difluoride) subunits. Three BODIPY arrays, containing two, three, and four BF2 subunits, namely 4·2BF2, 4·3BF2 and 4·4BF2, could thus be isolated from the reaction of 4 with BF3·Et2O in the presence of triethylamine at 110 °C, albeit in relatively low yield. As prepared, bicycle 4 is characterized by a rigid C 2 symmetric structure as inferred from VT NMR spectroscopic analyses. In contrast, the three BODIPY-like arrays produced as the result of BF2 complexation are conformationally flexible and unsymmetric in nature as deduced from similar analyses. All four products, namely 4, 4·2BF2, 4·3BF2 and 4·4BF2, were characterized by means of single crystal X-ray diffraction analyses. Tetramer 4·4BF2 gives rise to a higher extinction coefficient (by 2.5 times) relative to the bis- and tris-BODIPY arrays 4·2BF2 and 4·3BF2. This was taken as evidence for stronger excitonic coupling in the case of 4·4BF2. All three BODIPY-like arrays proved nearly non-fluorescent, as expected given their conformationally mobile nature. The efficiency of reactive oxygen species (ROS) generation was also determined for the new BODIPY arrays of this study.

6.
Chem Sci ; 13(3): 692-697, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35173933

RESUMO

The meso-unsubstituted expanded porphyrinoid 3, incorporating two carbazole moieties, acts as an effective ligand for Co(ii) and permits the isolation and X-ray diffraction-based characterization of a 6 : 3 metal-to-ligand metallocage complex that converts spontaneously to the constituent 2 : 1 metal-to-ligand metalloring species in chloroform solution. The discrete metalloring is formed directly when the Co(ii) complex is crystallized from supersaturated solutions, whereas crystallization from more dilute solutions favors the metallocage. Studies with two other test cations, Pd(ii) and Zn(ii), revealed exclusive formation of the monomeric metalloring complexes with no evidence of higher order species being formed. Structural, electrochemical and UV-vis-NIR absorption spectral studies provide support for the conclusion that the Pd(ii) complex is less distorted and more effectively conjugated than its Co(ii) and Zn(ii) congeners, an inference further supported by TD-DFT calculations. The findings reported here underscore how expanded porphyrins can support coordination modes, including bimetallic complexes and self-assembled cage structures, that are not necessarily easy to access using more traditional ligand systems.

7.
Chemistry ; 27(65): 16173-16180, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34532908

RESUMO

A pair of meso-unsubstituted expanded carbaporphyrins containing two carbazole moieties were prepared in high isolated yields (82 and 76 %, respectively). The two macrocycles, namely 3 and 4, differ with respect to their substitution at the carbazole N-atoms i. e. by H and i-Bu, respectively. As prepared in their free-base forms, macrocycles 3 and 4 adopt figure-of-eight conformations and are best characterized as 40 π-electron, non-aromatic species possessing a decaphyrin(1.1.0.0.0.1.1.0.0.0) skeleton. Protonation of 3 with either trifluoroacetic acid (TFA) or perchloric acid (HClO4 ) produces a parallelogram-shaped structure. A similar structure is produced when N-functionalized system 4 is treated with TFA. In contrast, protonation of 4 with HClO4 leads it to adopt a twisted Möbius strip-like structure in the solid state, thus allowing access to three distinct conformational states as a function of the conditions.


Assuntos
Porfirinas , Prótons , Carbazóis , Conformação Molecular , Estrutura Molecular
8.
Chem Sci ; 12(29): 9916-9921, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34377389

RESUMO

Photoacoustic imaging (PAI) relies on the use of contrast agents with high molar absorptivity in the NIR-I/NIR-II region. Expanded porphyrins, synthetic analogues of natural tetrapyrrolic pigments (e.g. heme and chlorophyll), constitute as potentially attractive platforms due to their NIR-II absorptivity and their ability to respond to stimuli. Here, we evaluate two expanded porphyrins, naphthorosarin (1) and octaphyrin (4), as stimuli responsive PA contrast agents for functional PAI. Both undergo proton-coupled electron transfer to produce species that absorb well in the NIR-II region. Octaphyrin (4) was successfully encapsulated into 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG2000) nanoparticles to afford OctaNPs. In combination with PAI, OctaNPs allowed changes in the acidic environment of the stomach to be visualized and cancerous versus healthy tissues to be discriminated.

9.
ACS Omega ; 6(18): 11902-11910, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34056344

RESUMO

Catalyst-free photoinduced processes in aqueous medium represent significant advancement toward development of green and sustainable pathways in organic synthesis. tert-Butyl hydroperoxide (TBHP) is a widely used oxidant in organic reactions, where the decomposition of TBHP into its radicals by metal catalysts or other reagents is a key factor for efficient catalytic outcome. Herein, we report a simple and environmentally friendly visible light-promoted synthetic pathway for the synthesis of N-heterocyclic moieties, such as quinazolinones and quinoxalines, in the presence of TBHP as an oxidizing agent in aqueous medium that requires no catalysts/photocatalysts. The enhanced rate of decomposition to generate free radicals from TBHP upon visible light irradiation is the driving force for the domino reaction.

10.
Angew Chem Int Ed Engl ; 59(31): 13063-13070, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32330375

RESUMO

Two giant calix[n]phyrin derivatives namely calix[8]- (4) and calix[16]phyrin (5), involving two and four BF2 units, respectively, were prepared through the condensation of the bis-naphthobipyrrolylmethene-BF2 complex (3) with pentafluorobenzaldehyde. Calix[n]phyrins 4 and 5 display extremely high extinction coefficients (3.67 and 4.82×105 m-1 cm-1 , respectively) in the near-IR region, which was taken as initial evidence for strong excitonic coupling within these cyclic multi-chromophoric systems. Detailed insights into the effect of excitonic coupling dynamics on the electronic structure and photophysical properties of the macrocycles came from fluorescence, time-correlated single-photon counting (TCSPC) and transient absorption (TA) measurements. Support for these experimental findings came from theoretical studies. Theory and experiment confirmed that the coupling between the excitons depends on the specifics of the calix[n]phyrin structure, not just its size.

11.
ACS Appl Mater Interfaces ; 12(5): 5389-5402, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31931570

RESUMO

The increase in the use of bactericides is a matter of grave concern and a serious threat to human health. The present situation demands rapid and efficient detection and elimination of antibiotic-resistant microbes. Herein, we report the synthesis of a simple C3-symmetric molecular system (TGP) with an intrinsic positive charge through a single-step Schiff base condensation. In a water-dimethyl sulfoxide (DMSO) solvent mixture (80:20 v/v), TGP molecules self-aggregate to form spherical nanoparticles with a positively charged surface that displays efficient fluorescence owing to the aggregation-induced emission (AIE) phenomenon. Both Gram-positive and Gram-negative bacteria could be effectively detected through "turn-off" fluorescence spectroscopy as the electrostatic interaction of the resultant nanoaggregates with the negatively charged bacterial surface induced quenching of fluorescence of the nanoparticles. The fluorescence analysis and steady-state lifetime studies of TGP nanoparticles suggest that a nonradiative decay through photoinduced electron transfer from the nanoparticles to the bacterial surface leads to effective fluorescence quenching. Further, the TGP nanoaggregates demonstrate potent antimicrobial activity against microbes such as multidrug-resistant bacteria and fungi at a concentration as low as 74 µg/mL. A combination of factors including ionic surface characteristics of the nanoparticles for strong electrostatic binding on the bacterial surface followed by possible photoinduced electron transfer from the nanoaggregates to the bacterial membrane and enhanced oxidative stress in the membrane resulting from reactive oxygen species (ROS) generation is found accountable for the high antimicrobial activity of the TGP nanoparticles. The effective disruption of membrane integrity in both Gram-positive and Gram-negative bacteria upon interaction with the nanoaggregates can be observed from field emission scanning electron microscopy (FESEM) studies. The development of simple pathways for the molecular design of multifunctional broad-spectrum antimicrobial systems for rapid and real-time detection, wash-free imaging, and eradication of drug-resistant microbes might be crucial to combat pathogenic agents.


Assuntos
Anti-Infecciosos/química , Guanidina/química , Nanopartículas/química , Anti-Infecciosos/farmacologia , Cátions/química , Dimetil Sulfóxido/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Confocal , Microscopia Eletrônica de Varredura , Teoria Quântica , Espécies Reativas de Oxigênio/metabolismo , Bases de Schiff/química , Eletricidade Estática , Água/química
12.
ACS Omega ; 4(8): 13153-13164, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31460442

RESUMO

Development of nanozymes, which are nanomaterials with intrinsic enzymatic properties, has emerged as an appealing alternative to the natural enzymes with tremendous application potential from the chemical industry to biomedicine. The self-assembled growth of micrometer-sized oxide materials with controlled nonspherical shapes can be an important tool for enhancing activity as artificial enzymes, as the formation of these superstructures often results in high surface area with favorable impact on catalytic activity. Herein, the growth of rod-shaped Fe3O4 microstructures via a one-pot microwave-based method and using a water-poly(ethylene glycol) mixture as a solvent is reported, without the involvement of external shape-directing agents. The precursor metal salt played a key role in the size, shape, and phase selective evolution of iron oxide micro/nanomaterials. Whereas self-assembled microrod superstructures were obtained using Fe(NO3)3 as the metal salt precursor, use of FeCl3 or Fe-acetate as precursors afforded hollow Fe2O3 microparticles and Fe3O4 nanoparticles, respectively. A graphitic layer was deposited on the Fe3O4 surface, imparting a negative surface charge as a result of a high-temperature treatment of poly(ethylene glycol). The rod-shaped Fe3O4 microcrystals show efficient peroxidase-mimicking activity toward 3,3,5,5'-tetramethylbenzidine and pyrogallol as peroxidase substrates with a Michaelis-Menten rate constant (K m) value of 0.05 and 0.52 mM, respectively. The proficient enzyme mimicking behavior of these magnetic superstructures was further explored for the degradation of organic dyes that includes rhodamine B, methylene blue, and methyl orange with a rate constant (k) of 0.038, 0.011, and 0.007 min-1 respectively, using H2O2. This fast and simple method could help to develop a new pathway for differently shaped oxide nanoparticles in a sustainable and economical manner that can be harnessed as nanozymes for industrial as well as biological applications.

13.
Chem Commun (Camb) ; 55(44): 6185-6188, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31080980

RESUMO

Two cryptand-like, shape persistent [2+3] imine cages (1 and 2) derived from oligopyrrolic precursors (diformyl dipyrrylpyridine 3 and diformyl bipyrrole 4) were prepared. These cages contain open cavities as inferred from solid state structural analyses and act as selective CO2 gas adsorbing materials in the solid state.

14.
Org Lett ; 21(6): 1849-1852, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30810325

RESUMO

An air-stable N, N'-dihydroporphycene, the two-electron reduced form of porphycene, possessing two quinoxaline moieties fused at meso positions, was prepared and characterized. Nuclear magnetic resonance (NMR) and ultraviolet-visible light (UV-vis) spectroscopic studies and single-crystal X-ray diffraction analyses support its formulation as a nonaromatic species. Upon treatment with tetrabutylammonium fluoride (TBAF) in chloroform, a color change is produced that is consistent with deprotonation. Selective detection of this anion is readily achieved.

15.
ACS Appl Bio Mater ; 2(8): 3300-3311, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35030772

RESUMO

The ultimate aim in developing controlled drug delivery systems is to derive formulations to achieve drug release at a constant rate over a long duration. The drug release profile that follows zero-order kinetics is crucial for reduction in the drug administration frequency, reduced cytotoxicity, and improved convenience and compliance of patients. Designed drug delivery systems for achieving zero-order release are often complex, expensive, and difficult to manufacture. Herein, we demonstrate that a supramolecular hydrogel formed through the self-assembly of guanosine monophosphate (GMP) into highly ordered G-quadruplex structure and cross-linked through Fe3+ and Ca2+ ions exhibits potential for the pH-responsive controlled zero-order drug release of doxorubicin, a model chemotherapeutic drug. The fibril formation is initiated by the self-assembly of GMP into a quadruplex complex, which is cross-linked through the complexation of the phosphate groups with Fe(III) ions, resulting in a spontaneous hydrogel formation. The Ca2+ ions facilitate the improvement in the mechanical integrity of the fibril network in the Fe-GMP hydrogel via cross-linking of sugar moieties. The hydrogel showed a high loading capacity for drug molecules and a pH-responsive sustained zero-order drug release over several days owing to the lowered degradability of the cross-linked hydrogel in acidic buffer stimulant. In vitro drug-release studies further established a controlled pH-triggered drug release profile. The Ca2+ cross-linking of the Fe-GMP hydrogel also resulted in significant enhancement in the biocompatibility of the drug delivery system. The fabrication of biocompatible, low-cost, and efficient Ca2+ cross-linked metal-organic hydrogels may present promising applications in biological fields.

16.
J Am Chem Soc ; 140(38): 12111-12119, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30180553

RESUMO

Proton-coupled electron transfer (PCET) is an important chemical and biological phenomenon. It is attractive as an on-off switching mechanism for redox-active synthetic systems but has not been extensively exploited for this purpose. Here we report a core-modified planar weakly antiaromatic/nonaromatic octaphyrin, namely, a [32]octaphyrin(1.0.1.0.1.0.1.0) (1) derived from rigid naphthobipyrrole and dithienothiophene (DTT) precursors, that undergoes proton-coupled two-electron reduction to produce its aromatic congener in the presence of HCl and other hydrogen halides. Evidence for the production of a [4 n + 1] π-electron intermediate radical state is seen in the presence of trifluoroacetic acid. Electrochemical analyses provide support for the notion that protonation causes a dramatic anodic shift in the reduction potentials of octaphyrin 1, thereby facilitating electron transfer from halide anions (viz. I-, Br-, and, Cl-). Electron-rich molecules, such as tetrathiafulvene (TTF), phenothiazine (PTZ), and catechol, were also found to induce PCET in the case of 1. Both the oxidized and two-electron reduced forms of 1 were characterized by X-ray diffraction analyses in the solid state and in solution via spectroscopic means.


Assuntos
Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Macrocíclicos/química , Prótons , Ácidos/química , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Ácido Bromídrico/química , Ácido Clorídrico/química , Compostos de Iodo/química , Compostos Macrocíclicos/síntese química , Estrutura Molecular , Oxirredução
17.
Soft Matter ; 14(28): 5715-5720, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29978884

RESUMO

The integration of nanoscale materials into unconventional environments such as gels is a magnificent strategy towards development of engineered hybrid functional systems. Herein, the in situ formation of CdS quantum dots integrated into a metallogel formed through the coordination of Cd2+ with two pyrimidine nucleobases is reported. Thymine and uracil formed spontaneous hydrogels with nanofibrous morphology through coordinative interaction with Cd2+ ions at alkaline pH. Introduction of Na2S resulted in generation of CdS quantum dots within the hydrogels with tunable emission properties from blue to white to yellow. The quenching of emission of white light system was exploited for the sensing of Fe3+ and Cu2+ ions. Such a color tunable quantum dot incorporated metallogel system will find applications in energy harvesting and sensing.

18.
ACS Omega ; 3(10): 13711-13719, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458072

RESUMO

The development of synthetic protocols for biologically important molecules using biocompatible catalysts in aqueous medium holds the key in green and sustainable chemistry. Herein, a magnetically recoverable iron oxide-carbon dot nanocomposite has been demonstrated as an effective catalyst for cyclooxidative tandem synthesis of quinazolinones in aqueous medium using alcohols as starting materials. Fluorescent carbon dots, the newest entrant in the nanocarbon family, were used as the stabilizing agent for the iron oxide nanoparticles, and a continuous layer of carbon dots decorates the iron oxide nanoparticle surface as observed by transmission electron microscopy. The fluorescence studies demonstrated the effective electron transfer from carbon dots to the iron oxide nanoparticles resulting in complete quenching of emission owing to carbon dots, once it binds with iron oxide nanoparticles. The nanocatalyst showed high activity with significant reusability for the syntheses of quinazolinones in the presence of tert-butyl hydroperoxide (TBHP) in an aqueous medium. Controlled experiments revealed the synergistic effect of carbon dots in enhancing the catalytic activity of iron oxide, as they might influence the decomposition of TBHP into radicals owing to their peroxidase activity. These radicals stabilized over the nanoparticle surface are known to have increased lifetime compared to solution-based radicals. These surface-stabilized radicals then could catalyze the tandem reaction resulting in the formation of the quinazolinone derivatives in high yields.

19.
Langmuir ; 33(31): 7622-7632, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28696709

RESUMO

The colloidal stabilization of multiwalled carbon nanotubes (MWCNTs) in an aqueous medium through noncovalent interactions has potential benefits toward the practical use of this one-dimensional carbonaceous material for biomedical applications. Here, we report that fluorescent carbon nanodots can efficiently function as dispersing agents in the preparation of stable aqueous suspensions of CNTs at significant concentrations (0.5 mg/mL). The amphiphilic nature of carbon dots with a hydrophobic graphitic core could effectively interact with the CNT surface, whereas hydrophilic oxygenated functionalization on the C-dot surface provided excellent water dispersibility. The resultant CNT-C-dot composite showed significantly reduced cytotoxicity compared to that of unmodified or protein-coated CNTs, as demonstrated by cell viability and proliferation assays. Furthermore, the reducing capability of C-dots could be envisaged toward the formation of a catalytically active metal nanoparticle-CNT-C-dot composite without the addition of any external reducing or stabilizing agents that showed excellent catalytic activity toward the reduction of p-nitrophenol in the presence of NaBH4. Overall, the present work establishes C-dots as an efficient stabilizer for aqueous dispersions of CNTs, leading to an all-carbon nanocomposite that can be useful for different practical applications.


Assuntos
Nanotubos de Carbono , Sobrevivência Celular , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas , Nanocompostos
20.
J Org Chem ; 82(4): 2097-2106, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28121145

RESUMO

Herein, we report the fluorescent carbon dots as an effective and recyclable carbocatalyst for the generation of carbon-heteroatom bond leading to quinazolinone derivatives and aza-Michael adducts under mild reaction conditions. The results establish this nanoscale form of carbon as an alternative carbocatalyst for important acid catalyzed organic transformations. The mild surface acidity of carbon dots imparted by -COOH functionality could effectively catalyze the formation of synthetically challenging spiro/glycoquinazolinones under the present reaction conditions.


Assuntos
Compostos Aza/química , Corantes Fluorescentes/química , Nanotubos de Carbono/química , Quinazolinonas/síntese química , Catálise , Estrutura Molecular , Quinazolinonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...