Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(21): 31749-31760, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35015235

RESUMO

Odiel river basin is located in the Iberian Pyritic Belt (IPB) and mostly of its tributaries are severely affected by acid mine drainage (AMD). It is originated when pyritic minerals from abandoned mines, especially mineral residues from waste rock dams, get in contact with air and water. Fifteen sampling points were chosen to analyze interactions between diatom communities and water hydrogeochemistry. Considering physicochemical characteristics, sampling points were assigned as highly, moderately, and unpolluted by AMD. No correlation was observed between ecological diversity indexes and physico-chemical parameters. However, a dependency relationship between diatom species distribution and specific pH, conductivity, redox potential, sulfate, and metal concentrations was observed. Cluster analysis based on Pearson correlation and rs values of the non-parametric Spearman correlation allowed to identify Pinnularia acidophila, Pinnularia subcapitata var. elongata, and Eunotia exigua as the main bioindicators of AMD-polluted Odiel streams. Finally, a principal component analysis led to associate the most abundant diatoms species to specific physico-chemical parameters.


Assuntos
Diatomáceas , Poluentes Químicos da Água , Ácidos/análise , Monitoramento Ambiental , Minerais/análise , Rios/química , Espanha , Água/análise , Poluentes Químicos da Água/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-34444203

RESUMO

The Odiel River (SW Spain) is one of the most cited rivers in the scientific literature due to its high pollution degree, generated by more than 80 sulphide mines' (mostly unrestored) contamination in the Iberian Pyritic Belt (IPB), that have been exploited for more than 5000 years. Along the river and its tributaries, the physico-chemical parameters and diatoms, from 15 sampling points, were analyzed in the laboratory. Physico-chemical parameters, water chemical analysis, together with richness and Shannon-Wiener indexes were integrated in a matrix. An initial graphical treatment allowed the definition and proposal of a functioning system model, as well as the establishment of cause-effect relationships between pollution and its effects on biota. Then, the proposed model was statistically validated by factor analysis. For acidic pH waters, high values of Eh, TDS, sulphate, ∑REE and ∑Ficklin were found, while diatomologic indicators took low values. Thus, factor analysis was a very effective tool for graphical treatment validation as well as for pollution-biota interaction models' formulation, governed by two factors: AMD processes and water balance suffered by the studied river. As a novelty, the cause-effect relationships between high barium concentration and low diversity and richness were demonstrated in the IPB, for the first time.


Assuntos
Diatomáceas , Poluentes Químicos da Água , Monitoramento Ambiental , Modelos Estatísticos , Rios , Espanha , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Astrobiology ; 21(4): 443-463, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33351707

RESUMO

The Iberian Pyrite Belt in southwest Spain hosts some of the largest and diverse extreme acidic environments with textural variation across rapidly changing biogeochemical gradients at multiple scales. After almost three decades of studies, mostly focused on molecular evolution and metagenomics, there is an increasing awareness of the multidisciplinary potential of these types of settings, especially for astrobiology. Since modern automatized exploration on extraterrestrial surfaces is essentially based on the morphological recognition of biosignatures, a macroscopic characterization of such sedimentary extreme environments and how they look is crucial to identify life properties, but it is a perspective that most molecular approaches frequently miss. Although acid mine drainage (AMD) systems are toxic and contaminated, they offer at the same time the bioengineering tools for natural remediation strategies. This work presents a biosedimentological characterization of the clastic iron stromatolites in the Tintillo river. They occur as laminated terraced iron formations that are the most distinctive sedimentary facies at the Tintillo river, which is polluted by AMD. Iron stromatolites originate from fluvial abiotic factors that interact with biological zonation. The authigenic precipitation of schwertmannite and jarosite results from microbial-mineral interactions between mineral and organic matrices. The Tintillo iron stromatolites are composed of bacterial filaments and diatoms as Nitzschia aurariae, Pinnularia aljustrelica, Stauroneis kriegeri, and Fragilaria sp. Furthermore, the active biosorption and bioleaching of sulfur are suggested by the black and white coloration of microbial filaments inside stromatolites. AMD systems are hazardous due to physical, chemical, and biological agents, but they also provide biogeochemical sources with which to infer past geochemical conditions on Earth and inform exploration efforts on extraterrestrial surfaces in the future.


Assuntos
Mineração , Rios , Ácidos , Ferro/análise , Espanha
4.
Artigo em Inglês | MEDLINE | ID: mdl-31731686

RESUMO

Twenty-three water dams located in the Iberian Pyrite Belt were studied during March 2012 (early spring) in order to carry out an environmental assessment based on diatom communities and to define the relationships between these biological communities and the physico-chemical characteristics of the dam surface water. This is the first time that a diatom inventory has been done for dams affected by acid mine drainage (AMD) in the Spanish part of the Iberian Pyrite Belt (IPB). It was found that the pH was the main factor influencing the behaviour of the diatom communities. Then, using a dbRDA approach it was possible to organize the aggrupation of diatoms into four groups in response to the physico-chemical conditions of the ecosystem, especially pH: (1) Maris, Aac, Gos, Cmora (pH 2-3); (2) Andc, San, And, Dpin (pH 3-4.5); (3) Gran, Pleon, Oliv, Lagu, Chan, SilI, SilII, Joya, Gar, Agrio, Camp, Corum (pH 4.5-6); (4) Herr, Diq I, Diq II (pH 6-7). The obtained results confirmed the response of benthic diatom communities to changes in the physico-chemical characteristics of surface water, and helped to understand the role of diatoms as indicators of the degree of AMD contamination in those 23 dams. Special attention was given to those that have an acidophilic or acid-tolerant profile (pH 2-3 and pH 3-4.5) such as Pinnularia aljustrelica, Pinnularia acidophila, Pinnularia acoricola and Eunotia exigua, which are the two groups found in the most AMD contaminated dams.


Assuntos
Ácidos/análise , Diatomáceas/crescimento & desenvolvimento , Mineração , Rios/química , Rios/microbiologia , Poluentes Químicos da Água/análise , Ecossistema , Monitoramento Ambiental/métodos , Concentração de Íons de Hidrogênio , Ferro/química , Estações do Ano , Espanha , Sulfetos/química
5.
Sci Total Environ ; 553: 42-51, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26901801

RESUMO

Phosphogypsum wastes from phosphate fertilizer industries are stockpiled in stacks with high contamination potential. An assessment of the environmental impact, including the use of geochemical tracers such as rare earth elements (REE) and Cl/Br ratios, was carried out in the phosphogypsum stack located at the Estuary of Huelva (SW Spain). Inside the pile, highly polluted acid pore-waters flows up to the edge of the stack, emerging as small fluvial courses, known as edge outflows, which discharge directly into the estuary. The disposal area is divided into four zones; two unrestored zones with surface ponds of industrial process water and two a priori already-restored zones. However, an extensive sampling of edge outflows conducted in the perimeter of the four zones demonstrates the high potential of contamination of the whole stack, including those zones that were supposedly restored. These solutions are characterized by a pH of 1.9 and concentrations of 6100 mg/L for P, 1970 mg/L for S, 600 mg/L for F, 200mg/L for NH4(+), 100mg/L for Fe, 10-30 mg/L for Zn, As and U, and 1-10mg/L for Cr, Cu and Cd. Preliminary restoration actions and those planned for the future prioritize removal of ponded process water and cover of the phosphogypsum with artificial topsoil. These actions presuppose that the ponded process water percolates through the porous medium towards the edge up to reach the estuary. However, geochemical tracers rule out this connection and point to an estuarine origin for these leachates, suggesting a possible tidal-induced leaching of the waste pile in depth. These findings would explain the ineffectiveness of preliminary restoration measures and should be considered for the development of new action plans.


Assuntos
Sulfato de Cálcio/análise , Monitoramento Ambiental , Estuários , Resíduos Industriais/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Fertilizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...