Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofactors ; 49(3): 646-662, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36714992

RESUMO

The semi-essential ubiquitous amino acid taurine has been shown to alleviate obesity and hyperglycemia in humans; however, the pathways underlying the antidiabetic actions have not been characterized. We explored the effect of chronic taurine exposure on cell biology of pancreatic islets, in degenerative type 1-like diabetes. The latter was modeled by small dose of streptozotocin (STZ) injection for 5 days in mice, followed by a 10-day administration of taurine (2% w/v, orally) in the drinking water. Taurine treatment opposed the detrimental changes in islet morphology and ß-/α-cell ratio, induced by STZ diabetes, coincidentally with a significant 3.9 ± 0.7-fold enhancement of proliferation and 40 ± 5% reduction of apoptosis in ß-cells. In line with these findings, the treatment counteracted an upregulation of antioxidant (Sod1, Sod2, Cat, Gpx1) and downregulation of islet expansion (Ngn3, Itgb1) genes induced by STZ, in a pancreatic ß-cell line. At the same time, taurine enhanced the transdifferentiation of α-cells into ß-cells by 2.3 ± 0.8-fold, echoed in strong non-metabolic elevation of cytosolic Ca2+ levels in pancreatic α-cells. Our data suggest a bimodal effect of dietary taurine on islet ß-cell biology, which combines the augmentation of α-/ß-cell transdifferentiation with downregulation of apoptosis. The dualism of action, stemming presumably from the intra- and extracellular modality of the signal, is likely to explain the antidiabetic potential of taurine supplementation.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Taurina/farmacologia , Transdiferenciação Celular , Glicemia/metabolismo , Ilhotas Pancreáticas/metabolismo , Hipoglicemiantes/farmacologia , Estreptozocina , Insulina/metabolismo
2.
J Pharm Pharmacol ; 74(12): 1758-1764, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36206181

RESUMO

OBJECTIVES: The antimalarial drug artemether is suggested to effect pancreatic islet cell transdifferentiation, presumably through activation γ-aminobutyric acid receptors, but this biological action is contested. METHODS: We have investigated changes in α-cell lineage in response to 10-days treatment with artemether (100 mg/kg oral, once daily) on a background of ß-cell stress induced by multiple low-dose streptozotocin (STZ) injection in GluCreERT2; ROSA26-eYFP transgenic mice. KEY FINDINGS: Artemether intervention did not affect the actions of STZ on body weight, food and fluid intake or blood glucose. Circulating insulin and glucagon were reduced by STZ treatment, with a corresponding decline in pancreatic insulin content, which were not altered by artemether. The detrimental changes to pancreatic islet morphology induced by STZ were also evident in artemether-treated mice. Tracing of α-cell lineage, through co-staining for glucagon and yellow fluorescent protein (YFP), revealed a significant decrease of the proportion of glucagon+YFP- cells in STZ-diabetic mice, which was reversed by artemether. However, artemether had no effect on transdifferentiation of α-cells into ß-cells and failed to augment the number of bi-hormonal, insulin+glucagon+, islet cells. CONCLUSIONS: Our observations confirm that artemisinin derivatives do not impart meaningful benefits on islet cell lineage transition events or pancreatic islet morphology.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Insulina/metabolismo , Glucagon/metabolismo , Glucagon/farmacologia , Transdiferenciação Celular , Diabetes Mellitus Experimental/metabolismo , Artemeter/farmacologia , Artemeter/metabolismo , Artemeter/uso terapêutico , Glicemia , Estreptozocina/farmacologia
3.
Biochem Pharmacol ; 199: 115019, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35358478

RESUMO

AIM: Poorly controlled diabetes is characterised by a partial or complete loss of pancreatic islet ß-cells, which deprives the remaining islet cells of important ß-cell-derived soluble signals, such as insulin or GABA. We aimed to dissect the role of the two signals in the development of islet α-cells, focusing specifically on α-/ß-cell transdifferentiation and using the stem cell differentiation factor nicotinamide as a comparator. METHODS: Streptozotocin (STZ)-treated diabetic mice expressing a fluorescent reporter in pancreatic islet α-cells were injected with GABA (10 mg/kg once daily), nicotinamide (150 mg/kg once daily) or insulin (1U/kg three times daily) for 10 days. The impact of the treatment on metabolic status of the animals as well as the morphology, proliferative potential and transdifferentiation of pancreatic islet cells was assessed using biochemical methods and immunofluorescence. RESULTS: Metabolic status of STZ-diabetic mice was not dramatically altered by the treatment interventions, although GABA therapy did reduce circulating glucagon and augment pancreatic insulin stores. The effects of the exogenous agents on islet ß-cells ranged from the attenuation of apoptosis (insulin, nicotinamide) to enhancement of proliferation (GABA). Furthermore, insulin and GABA but not nicotinamide enhanced the differentiation of α-cells into ß-cells and increased relative number of 'bihormonal' cells, expressing both insulin and glucagon. CONCLUSIONS: Our data suggest a role for endogenous insulin and GABA signalling in α-cell plasticity, which is likely to bypass the common nicotinamide-sensitive stem cell differentiation pathway.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Glucagon , Células Secretoras de Insulina , Animais , Glicemia/metabolismo , Transdiferenciação Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucagon/metabolismo , Insulina/metabolismo , Camundongos , Niacinamida/metabolismo , Niacinamida/farmacologia , Estreptozocina/farmacologia , Ácido gama-Aminobutírico/metabolismo
4.
Biochem Pharmacol ; 182: 114216, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32926875

RESUMO

Gut incretins, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP), enhance secretion of insulin in a glucose-dependent manner, predominantly by elevating cytosolic levels of cAMP in pancreatic ß-cells. Successful targeting of the incretin pathway by several drugs, however, suggests the antidiabetic mechanism is likely to span beyond the acute effect on hormone secretion and include, for instance, stimulation of ß-cell growth and/or proliferation. Likewise, the antidiabetic action of kidney sodium-glucose linked transporter-2 (SGLT-2) inhibitors exceeds simple increase glucose excretion. Potential reasons for these 'added benefits' may lie in the long-term effects of these signals on developmental aspects of pancreatic islet cells. In this work, we explored if the incretin mimetics or SGLT-2 inhibitors can affect the size of the islet α- or ß-cell compartments, under the condition of ß-cell stress. To that end, we utilised mice expressing YFP specifically in pancreatic α-cells, in which we modelled type 1 diabetes by injecting streptozotocin, followed by a 10-day administration of liraglutide, sitagliptin or dapagliflozin. We observed an onset of diabetic phenotype, which was partially reversed by the administration of the antidiabetic drugs. The mechanism for the reversal included induction of ß-cell proliferation, decrease in ß-cell apoptosis and, for the incretin mimetics, transdifferentiation of α-cells into ß-cells. Our data therefore emphasize the role of chronic incretin signalling in induction of α-/ß-cell transdifferentiation. We conclude that incretin peptides may act directly on islet cells, making use of the endogenous local sites of 'ectopic' expression, whereas SGLT-2 inhibitors work via protecting ß-cells from chronic hyperglycaemia.


Assuntos
Transdiferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/metabolismo , Hipoglicemiantes/uso terapêutico , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Transdiferenciação Celular/fisiologia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglicemiantes/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
Peptides ; 125: 170205, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31738969

RESUMO

Enzyme-resistant long-acting forms of the gut-derived peptide hormones, glucose-dependent insulinotropic polypeptide (GIP), xenin and oxyntomodulin (Oxm) have been generated, and exert beneficial effects on diabetes control and pancreatic islet architecture. The current study has employed alpha-cell lineage tracing in GluCreERT2;ROSA26-eYFP transgenic mice to investigate the extent to which these positive pancreatic effects are associated with alpha- to beta-cell transdifferentiation. Twice-daily administration of (D-Ala2)GIP, xenin-25[Lys13PAL] or (D-Ser2)-Oxm[Lys38PAL] for 10 days to streptozotocin (STZ)-induced diabetic mice did not affect body weight, food intake or blood glucose levels, but (D-Ser2)-Oxm[Lys38PAL] reduced (P < 0.05 to P < 0.001) fluid intake and circulating glucagon. (D-Ala2)GIP and (D-Ser2)-Oxm[Lys38PAL] also augmented (P < 0.05 and P < 0.01, respectively) pancreatic insulin content. Detrimental changes of pancreatic morphology induced by STZ in GluCreERT2;ROSA26-eYFP mice were partially reversed by all treatment interventions. This was associated with reduced (P < 0.05) apoptosis and increased (P < 0.05 to P < 0.01) proliferation of beta-cells, alongside opposing effects on alpha-cells, with (D-Ala2)GIP and (D-Ser2)-Oxm[Lys38PAL] being particularly effective in this regard. Alpha-cell lineage tracing revealed that induction of diabetes was accompanied by increased (P < 0.01) transdifferentiation of glucagon positive alpha-cells to insulin positive beta-cells. This islet cell transitioning process was augmented (P < 0.01 and P < 0.001, respectively) by (D-Ala2)GIP and (D-Ser2)-Oxm[Lys38PAL]. (D-Ser2)-Oxm[Lys38PAL] also significantly (P < 0.05) promoted loss of alpha-cell identity in favour of other endocrine islet cells. These data highlight intra-islet benefits of (D-Ala2)GIP, xenin-25[Lys13PAL] and (D-Ser2)-Oxm[Lys38PAL] in diabetes with beta-cell loss induced by STZ. The effects appear to be independent of glycaemic change, and associated with alpha- to beta-cell transdifferentiation for the GIP and Oxm analogues.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Polipeptídeo Inibidor Gástrico/farmacologia , Células Secretoras de Glucagon/efeitos dos fármacos , Neurotensina/farmacologia , Oxintomodulina/farmacologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transdiferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Fármacos Gastrointestinais/farmacologia , Células Secretoras de Glucagon/patologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...