Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 15(1): 2200, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467655

RESUMO

We present a hydrogen/deuterium exchange workflow coupled to tandem mass spectrometry (HX-MS2) that supports the acquisition of peptide fragment ions alongside their peptide precursors. The approach enables true auto-curation of HX data by mining a rich set of deuterated fragments, generated by collisional-induced dissociation (CID), to simultaneously confirm the peptide ID and authenticate MS1-based deuteration calculations. The high redundancy provided by the fragments supports a confidence assessment of deuterium calculations using a combinatorial strategy. The approach requires data-independent acquisition (DIA) methods that are available on most MS platforms, making the switch to HX-MS2 straightforward. Importantly, we find that HX-DIA enables a proteomics-grade approach and wide-spread applications. Considerable time is saved through auto-curation and complex samples can now be characterized and at higher throughput. We illustrate these advantages in a drug binding analysis of the ultra-large protein kinase DNA-PKcs, isolated directly from mammalian cells.


Assuntos
Medição da Troca de Deutério , Hidrogênio , Animais , Deutério/química , Medição da Troca de Deutério/métodos , Hidrogênio/química , Espectrometria de Massas em Tandem/métodos , Peptídeos/química , Mamíferos
3.
J Am Soc Mass Spectrom ; 34(10): 2146-2155, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37590165

RESUMO

Crosslinking mass spectrometry (XL-MS) supports structure analysis of individual proteins and highly complex whole-cell interactomes. The identification of crosslinked peptides from enzymatic digests remains challenging, especially at the cell level. Empirical methods that use gas-phase cleavable crosslinkers can simplify the identification process by enabling an MS3-based strategy that turns crosslink identification into a simpler problem of detecting two separable peptides. However, the method is limited to select instrument platforms and is challenged by duty cycle constraints. Here, we revisit a pseudo-MS3 concept that incorporates in-source fragmentation, where a fast switch between gentle high-transmission source conditions and harsher in-source fragmentation settings liberates peptides for standard MS2-based peptide identification. We present an all-in-one method where retention time matches between the crosslink precursor and the liberated peptides establish linkage, and MS2 sequencing identifies the source-liberated peptides. We demonstrate that DC4, a very labile cleavable crosslinker, generates high-intensity peptides in-source. Crosslinks can be identified from these liberated peptides, as they are chromatographically well-resolved from monolinks. Using bovine serum albumin (BSA) as a crosslinking test case, we detect 27% more crosslinks with pseudo-MS3 over a best-in-class MS3 method. While performance is slightly lower for whole-cell lysates (generating two-thirds of the identifications of a standard method), we find that 60% of these hits are unique, highlighting the complementarity of the method.


Assuntos
Peptídeos , Soroalbumina Bovina , Peptídeos/química , Espectrometria de Massas , Soroalbumina Bovina/química , Estrutura Secundária de Proteína , Reagentes de Ligações Cruzadas/química
4.
Anal Chem ; 95(15): 6425-6432, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37022750

RESUMO

Crosslinking mass spectrometry (XL-MS) is a valuable technique for generating point-to-point distance measurements in protein space. However, cell-based XL-MS experiments require efficient software that can detect crosslinked peptides with sensitivity and controlled error rates. Many algorithms implement a filtering strategy designed to reduce the size of the database prior to mounting a search for crosslinks, but concern has been expressed over the possibility of reduced sensitivity using these strategies. We present a new scoring method that uses a rapid presearch method and a concept inspired by computer vision algorithms to resolve crosslinks from other conflicting reaction products. Searches of several curated crosslink datasets demonstrate high crosslink detection rates, and even the most complex proteome-level searches (using cleavable or noncleavable crosslinkers) can be completed efficiently on a conventional desktop computer. The detection of protein-protein interactions is increased twofold through the inclusion of compositional terms in the scoring equation. The combined functionality is made available as CRIMP 2.0 in the Mass Spec Studio.


Assuntos
Peptídeos , Proteoma , Peptídeos/química , Espectrometria de Massas/métodos , Software , Algoritmos , Reagentes de Ligações Cruzadas/química
5.
Anal Chem ; 95(9): 4421-4428, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36880265

RESUMO

Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a rapidly growing technique for protein characterization in industry and academia, complementing the "static" picture provided by classical structural biology with information about the dynamic structural changes that accompany biological function. Conventional hydrogen deuterium exchange experiments, carried out on commercially available systems, typically collect 4-5 exchange timepoints on a timescale ranging from tens of seconds to hours using a workflow that can require 24 h or more of continuous data collection for triplicate measurements. A small number of groups have developed setups for millisecond timescale HDX, allowing for the characterization of dynamic shifts in weakly structured or disordered regions of proteins. This capability is particularly important given the central role that weakly ordered protein regions often play in protein function and pathogenesis. In this work, we introduce a new continuous flow injection setup for time-resolved HDX-MS (CFI-TRESI-HDX) that allows automated, continuous or discrete labeling time measurements from milliseconds to hours. The device is composed almost entirely of "off-the-shelf" LC components and can acquire an essentially unlimited number of timepoints with substantially reduced runtimes compared to conventional systems.


Assuntos
Medição da Troca de Deutério , Tetranitrato de Pentaeritritol , Espectrometria de Massa com Troca Hidrogênio-Deutério , Coleta de Dados , Hidrogênio
6.
Anal Chem ; 93(9): 4246-4254, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33592142

RESUMO

The data analysis practices associated with hydrogen-deuterium exchange mass spectrometry (HX-MS) lag far behind that of most other MS-based protein analysis tools. A reliance on external tools from other fields and a persistent need for manual data validation restrict this powerful technology to the expert user. Here, we provide an extensive upgrade to the HX data analysis suite available in the Mass Spec Studio in the form of two new apps (HX-PIPE and HX-DEAL), completing a workflow that provides an HX-tailored peptide identification capability, accelerated validation routines, automated spectral deconvolution strategies, and a rich set of exportable graphics and statistical reports. With these new tools, we demonstrate that the peptide identifications obtained from undeuterated samples generated at the start of a project contain information that helps predict and control the extent of manual validation required. We also uncover a large fraction of HX-usable peptides that remains unidentified in most experiments. We show that automated spectral deconvolution routines can identify exchange regimes in a project-wide manner, although they remain difficult to accurately assign in all scenarios. Taken together, these new tools provide a robust and complete solution suitable for the analysis of high-complexity HX-MS data.

7.
J Proteomics ; 225: 103844, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32480078

RESUMO

Structural Mass Spectrometry (SMS) provides a comprehensive toolbox for the analysis of protein structure and function. It offers multiple sources of structural information that are increasingly useful for integrative structural modeling of complex protein systems. As MS-based structural workflows scale to larger systems, consistent and coherent data interpretation resources are needed to better support modeling. Unlike the proteomics community, practitioners of SMS lack adequate computational tools. Here, we review new developments in the Mass Spec Studio: an expandable ecosystem of workflows for the analysis of complementary SMS techniques with linkages to modeling. Current functionality in the Studio (version 2) supports three major SMS workflows (crosslinking, hydrogen/deuterium exchange and covalent labelling) and two pipelines for structural modeling, with a special focus on data integration. The Mass Spec Studio is an architecture focused on rapid and robust extension of functionality by a community of developers. SIGNIFICANCE: This review surveys the new data analysis capabilities within the Mass Spec Studio, a rich framework for rapid software development specifically targeting the community of structural proteomics and structural mass spectrometry. Updates to crosslinking, hydrogen/deuterium-exchange and covalent labeling apps are provided as well as a utility for translating such analyses into restraints that support integrative structural modeling. These new capabilities, together with the underlying design tools and content, provide the community with a wealth of resources to tackle complex structural problem and design new approaches to data analysis.


Assuntos
Ecossistema , Proteínas , Espectrometria de Massas , Proteômica , Software
8.
Anal Chem ; 91(13): 8492-8499, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31198032

RESUMO

Covalent labeling with mass spectrometry (CL-MS) provides a direct measure of the chemical and structural features of proteins with the potential for resolution at the amino-acid level. Unfortunately, most applications of CL-MS are limited to narrowly defined differential analyses, where small numbers of residues are compared between two or more protein states. Extending the utility of high-resolution CL-MS for structure-based applications requires more robust computational routines and the development of methodology capable of reporting of labeling yield accurately. Here, we provide a substantial improvement in the analysis of CL-MS data with the development of an extended plug-in built within the Mass Spec Studio development framework (MSS-CLEAN). All elements of data analysis-from database search to site-resolved and normalized labeling output-are accommodated, as illustrated through the nonselective labeling of the human kinesin Eg5 with photoconverted 3,3'-azibutan-1-ol. In developing the new features within the CL-MS plug-in, we identified additional complexities associated with the application of CL reagents, arising primarily from digestion-induced bias in yield measurements and ambiguities in site localization. A strategy is presented involving the use of redundant site labeling data from overlapping peptides, the imputation of missing data, and a normalization routine to determine relative protection factors. These elements together provide for a robust structural interpretation of CL-MS/MS data while minimizing the over-reporting of labeling site resolution. Finally, to minimize bias, we recommend that digestion strategies for the generation of useful overlapping peptides involve the application of complementary enzymes that drive digestion to completion.


Assuntos
Marcação por Isótopo/métodos , Cinesinas/análise , Software , Espectrometria de Massas em Tandem/métodos , Humanos , Cinesinas/química , Modelos Moleculares , Conformação Proteica
9.
Mol Cell Proteomics ; 16(6): 1162-1171, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28404794

RESUMO

Trypsin dominates bottom-up proteomics, but there are reasons to consider alternative enzymes. Improving sequence coverage, exposing proteomic "dark matter," and clustering post-translational modifications in different ways and with higher-order drive the pursuit of reagents complementary to trypsin. Additionally, enzymes that are easy to use and generate larger peptides that capitalize upon newer fragmentation technologies should have a place in proteomics. We expressed and characterized recombinant neprosin, a novel prolyl endoprotease of the DUF239 family, which preferentially cleaves C-terminal to proline residues under highly acidic conditions. Cleavage also occurs C-terminal to alanine with some frequency, but with an intriguingly high "skipping rate." Digestion proceeds to a stable end point, resulting in an average peptide mass of 2521 units and a higher dependence upon electron-transfer dissociation for peptide-spectrum matches. In contrast to most proline-cleaving enzymes, neprosin effectively degrades proteins of any size. For 1251 HeLa cell proteins identified in common using trypsin, Lys-C, and neprosin, almost 50% of the neprosin sequence contribution is unique. The high average peptide mass coupled with cleavage at residues not usually modified provide new opportunities for profiling clusters of post-translational modifications. We show that neprosin is a useful reagent for reading epigenetic marks on histones. It generates peptide 1-38 of histone H3 and peptide 1-32 of histone H4 in a single digest, permitting the analysis of co-occurring post-translational modifications in these important N-terminal tails.


Assuntos
Histonas/metabolismo , Proteômica/métodos , Células HeLa , Histonas/química , Humanos , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo
10.
PLoS Pathog ; 13(3): e1006244, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28257520

RESUMO

Lactoferrin binding protein B (LbpB) is a bi-lobed outer membrane-bound lipoprotein that comprises part of the lactoferrin (Lf) receptor complex in Neisseria meningitidis and other Gram-negative pathogens. Recent studies have demonstrated that LbpB plays a role in protecting the bacteria from cationic antimicrobial peptides due to large regions rich in anionic residues in the C-terminal lobe. Relative to its homolog, transferrin-binding protein B (TbpB), there currently is little evidence for its role in iron acquisition and relatively little structural and biophysical information on its interaction with Lf. In this study, a combination of crosslinking and deuterium exchange coupled to mass spectrometry, information-driven computational docking, bio-layer interferometry, and site-directed mutagenesis was used to probe LbpB:hLf complexes. The formation of a 1:1 complex of iron-loaded Lf and LbpB involves an interaction between the Lf C-lobe and LbpB N-lobe, comparable to TbpB, consistent with a potential role in iron acquisition. The Lf N-lobe is also capable of binding to negatively charged regions of the LbpB C-lobe and possibly other sites such that a variety of higher order complexes are formed. Our results are consistent with LbpB serving dual roles focused primarily on iron acquisition when exposed to limited levels of iron-loaded Lf on the mucosal surface and effectively binding apo Lf when exposed to high levels at sites of inflammation.


Assuntos
Proteína B de Ligação a Transferrina/química , Proteína B de Ligação a Transferrina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Interferometria , Ferro/metabolismo , Espectrometria de Massas , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Neisseria meningitidis/química , Neisseria meningitidis/metabolismo , Ligação Proteica
11.
Curr Opin Biotechnol ; 43: 110-117, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27870998

RESUMO

Large and disparate sets of LC-MS data are generated by modern metabolomics profiling initiatives, and while useful software tools are available to annotate and quantify compounds, the field requires continued software development in order to sustain methodological innovation. Advances in software development practices allow for a new paradigm in tool development for metabolomics, where increasingly the end-user can develop or redeploy utilities ranging from simple algorithms to complex workflows. Resources that provide an organized framework for development are described and illustrated with LC-MS processing packages that have leveraged their design tools. Full access to these resources depends in part on coding experience, but the emergence of workflow builders and pluggable frameworks strongly reduces the skill level required. Developers in the metabolomics community are encouraged to use these resources and design content for uptake and reuse.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Software , Algoritmos , Animais , Humanos
12.
Mol Cell Proteomics ; 15(9): 3071-80, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27412762

RESUMO

The Mass Spec Studio package was designed to support the extraction of hydrogen-deuterium exchange and covalent labeling data for a range of mass spectrometry (MS)-based workflows, to integrate with restraint-driven protein modeling activities. In this report, we present an extension of the underlying Studio framework and provide a plug-in for crosslink (XL) detection. To accommodate flexibility in XL methods and applications, while maintaining efficient data processing, the plug-in employs a peptide library reduction strategy via a presearch of the tandem-MS data. We demonstrate that prescoring linear unmodified peptide tags using a probabilistic approach substantially reduces search space by requiring both crosslinked peptides to generate sparse data attributable to their linear forms. The method demonstrates highly sensitive crosslink peptide identification with a low false positive rate. Integration with a Haddock plug-in provides a resource that can combine multiple sources of data for protein modeling activities. We generated a structural model of porcine transferrin bound to TbpB, a membrane-bound receptor essential for iron acquisition in Actinobacillus pleuropneumoniae Using mutational data and crosslinking restraints, we confirm the mechanism by which TbpB recognizes the iron-loaded form of transferrin, and note the requirement for disparate sources of restraint data for accurate model construction. The software plugin is freely available at www.msstudio.ca.


Assuntos
Actinobacillus pleuropneumoniae/metabolismo , Reagentes de Ligações Cruzadas/química , Peptídeos/análise , Proteína B de Ligação a Transferrina/metabolismo , Transferrina/metabolismo , Actinobacillus pleuropneumoniae/química , Actinobacillus pleuropneumoniae/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Mutação , Peptídeos/química , Ligação Proteica , Conformação Proteica , Software , Suínos , Espectrometria de Massas em Tandem , Transferrina/química , Proteína B de Ligação a Transferrina/química , Proteína B de Ligação a Transferrina/genética
13.
Protein Sci ; 24(8): 1313-24, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26009873

RESUMO

Water-mediated hydrogen exchange (HX) processes involving the protein main chain are sensitive to structural dynamics and molecular interactions. Measuring deuterium uptake in amide bonds provides information on conformational states, structural transitions and binding events. Increasingly, deuterium levels are measured by mass spectrometry (MS) from proteolytically generated peptide fragments of large molecular systems. However, this bottom-up method has limited spectral capacity and requires a burdensome manual validation exercise, both of which restrict analysis of protein systems to generally less than 150 kDa. In this study, we present a bottom-up HX-MS(2) method that improves peptide identification rates, localizes high-quality HX data and simplifies validation. The method combines a new peptide scoring algorithm (WUF, weighted unique fragment) with data-independent acquisition of peptide fragmentation data. Scoring incorporates the validation process and emphasizes identification accuracy. The HX-MS(2) method is illustrated using data from a conformational analysis of microtubules treated with dimeric kinesin MCAK. When compared to a conventional Mascot-driven HX-MS method, HX-MS(2) produces two-fold higher α/ß-tubulin sequence depth at a peptide utilization rate of 74%. A Mascot approach delivers a utilization rate of 44%. The WUF score can be constrained by false utilization rate (FUR) calculations to return utilization values exceeding 90% without serious data loss, indicating that automated validation should be possible. The HX-MS(2) data confirm that N-terminal MCAK domains anchor kinesin force generation in kinesin-mediated depolymerization, while the C-terminal tails regulate MCAK-tubulin interactions.


Assuntos
Medição da Troca de Deutério/métodos , Cinesinas/química , Espectrometria de Massas/métodos , Microtúbulos/química , Tubulina (Proteína)/química , Algoritmos , Animais , Bovinos , Cinesinas/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Conformação Proteica , Software , Tubulina (Proteína)/metabolismo
14.
Structure ; 22(10): 1538-48, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25242457

RESUMO

The integration of biophysical data from multiple sources is critical for developing accurate structural models of large multiprotein systems and their regulators. Mass spectrometry (MS) can be used to measure the insertion location for a wide range of topographically sensitive chemical probes, and such insertion data provide a rich, but disparate set of modeling restraints. We have developed a software platform that integrates the analysis of label-based MS and tandem MS (MS(2)) data with protein modeling activities (Mass Spec Studio). Analysis packages can mine any labeling data from any mass spectrometer in a proteomics-grade manner, and link labeling methods with data-directed protein interaction modeling using HADDOCK. Support is provided for hydrogen/deuterium exchange (HX) and covalent labeling chemistries, including novel acquisition strategies such as targeted HX-MS(2) and data-independent HX-MS(2). The latter permits the modeling of highly complex systems, which we demonstrate by the analysis of microtubule interactions.


Assuntos
Espectrometria de Massas/métodos , Proteômica/métodos , Software , Sítios de Ligação , Deutério , Hidrogênio , Macrolídeos/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Espectrometria de Massas em Tandem/métodos , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo
15.
BMC Bioinformatics ; 14 Suppl 6: S2, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23734994

RESUMO

BACKGROUND: Many physiological processes within the human body can be perceived and modeled as large systems of interacting particles or swarming agents. The complex processes of the human immune system prove to be challenging to capture and illustrate without proper reference to the spatial distribution of immune-related organs and systems. Our work focuses on physical aspects of immune system processes, which we implement through swarms of agents. This is our first prototype for integrating different immune processes into one comprehensive virtual physiology simulation. RESULTS: Using agent-based methodology and a 3-dimensional modeling and visualization environment (LINDSAY Composer), we present an agent-based simulation of the decentralized processes in the human immune system. The agents in our model - such as immune cells, viruses and cytokines - interact through simulated physics in two different, compartmentalized and decentralized 3-dimensional environments namely, (1) within the tissue and (2) inside a lymph node. While the two environments are separated and perform their computations asynchronously, an abstract form of communication is allowed in order to replicate the exchange, transportation and interaction of immune system agents between these sites. The distribution of simulated processes, that can communicate across multiple, local CPUs or through a network of machines, provides a starting point to build decentralized systems that replicate larger-scale processes within the human body, thus creating integrated simulations with other physiological systems, such as the circulatory, endocrine, or nervous system. Ultimately, this system integration across scales is our goal for the LINDSAY Virtual Human project. CONCLUSIONS: Our current immune system simulations extend our previous work on agent-based simulations by introducing advanced visualizations within the context of a virtual human anatomy model. We also demonstrate how to distribute a collection of connected simulations over a network of computers. As a future endeavour, we plan to use parameter tuning techniques on our model to further enhance its biological credibility. We consider these in silico experiments and their associated modeling and optimization techniques as essential components in further enhancing our capabilities of simulating a whole-body, decentralized immune system, to be used both for medical education and research as well as for virtual studies in immunoinformatics.


Assuntos
Simulação por Computador , Sistema Imunitário , Modelos Anatômicos , Software , Imunidade Adaptativa , Educação Médica/métodos , Feminino , Humanos , Imageamento Tridimensional , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...