Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 12(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955421

RESUMO

BACKGROUND: Adoptive cell therapy using genetically modified T cells to express chimeric antigen receptors (CAR-T) has shown encouraging results, particularly in certain blood cancers. Nevertheless, over 40% of B cell malignancy patients experience a relapse after CAR-T therapy, likely due to inadequate persistence of the modified T cells in the body. IL15, known for its pro-survival and proliferative properties, has been suggested for incorporation into the fourth generation of CAR-T cells to enhance their persistence. However, the potential systemic toxicity associated with this cytokine warrants further evaluation. METHODS: We analyzed the persistence, antitumor efficacy and potential toxicity of anti-mouse CD19 CAR-T cells which express a membrane-bound IL15-IL15Rα chimeric protein (CD19/mbIL15q CAR-T), in BALB/c mice challenged with A20 tumor cells as well as in NSG mice. RESULTS: Conventional CD19 CAR-T cells showed low persistence and poor efficacy in BALB/c mice treated with mild lymphodepletion regimens (total body irradiation (TBI) of 1 Gy). CD19/mbIL15q CAR-T exhibits prolonged persistence and enhanced in vivo efficacy, effectively eliminating established A20 B cell lymphoma. However, this CD19/mbIL15q CAR-T displays important long-term toxicities, with marked splenomegaly, weight loss, transaminase elevations, and significant inflammatory findings in some tissues. Mice survival is highly compromised after CD19/mbIL15q CAR-T cell transfer, particularly if a high TBI regimen is applied before CAR-T cell transfer. CONCLUSION: Tethered IL15-IL15Rα augments the antitumor activity of CD19 CAR-T cells but displays long-term toxicity in immunocompetent mice. Inducible systems to regulate IL15-IL15Rα expression could be considered to control this toxicity.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Interleucina-15 , Animais , Camundongos , Antígenos CD19/imunologia , Imunoterapia Adotiva/métodos , Humanos , Modelos Animais de Doenças , Linhagem Celular Tumoral , Feminino , Subunidade alfa de Receptor de Interleucina-15 , Receptores de Antígenos Quiméricos/imunologia , Linfoma/terapia , Linfoma/imunologia , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Linfócitos T/transplante
2.
ACS Biomater Sci Eng ; 10(3): 1686-1696, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38347681

RESUMO

One of the main challenges in tissue engineering is finding a way to deliver specific growth factors (GFs) with precise spatiotemporal control over their presentation. Here, we report a novel strategy for generating microscale carriers with enhanced affinity for high content loading suitable for the sustained and localized delivery of GFs. Our developed microparticles can be injected locally and sustainably release encapsulated growth factors for up to 28 days. Fine-tuning of particles' size, affinity, microstructures, and release kinetics is achieved using a microfluidic system along with bioconjugation techniques. We also describe an innovative 3D micromixer platform to control the formation of core-shell particles based on superaffinity using a polymer-peptide conjugate for further tuning of release kinetics and delayed degradation. Chitosan shells block the burst release of encapsulated GFs and enable their sustained delivery for up to 10 days. The matched release profiles and degradation provide the local tissues with biomimetic, developmental-biologic-compatible signals to maximize regenerative effects. The versatility of this approach is verified using three different therapeutic proteins, including human bone morphogenetic protein-2 (rhBMP-2), vascular endothelial growth factor (VEGF), and stromal cell-derived factor 1 (SDF-1α). As in vivo morphogenesis is typically driven by the combined action of several growth factors, the proposed technique can be developed to generate a library of GF-loaded particles with designated release profiles.


Assuntos
Microfluídica , Fator A de Crescimento do Endotélio Vascular , Humanos , Preparações de Ação Retardada/química , Fator A de Crescimento do Endotélio Vascular/genética , Engenharia Tecidual , Polímeros
3.
Cancer Lett ; 561: 216139, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001752

RESUMO

Despite the success of immune checkpoint blockade for cancer therapy, many patients do not respond adequately. We aimed to improve this therapy by optimizing both the antibodies and their delivery route, using small monodomain antibodies (nanobodies) delivered locally with a self-amplifying RNA (saRNA) vector based on Semliki Forest virus (SFV). We generated nanobodies against PD-1 and PD-L1 able to inhibit both human and mouse interactions. Incorporation of a dimerization domain reduced PD-1/PD-L1 IC50 by 8- and 40-fold for anti-PD-L1 and anti-PD-1 nanobodies, respectively. SFV viral particles expressing dimeric nanobodies showed a potent antitumor response in the MC38 model, resulting in >50% complete regressions, and showed better therapeutic efficacy compared to vectors expressing conventional antibodies. These effects were also observed in the B16 melanoma model. Although a short-term expression of nanobodies was observed due to the cytopathic nature of the saRNA vector, it was enough to generate a strong proinflammatory response in tumors, increasing infiltration of NK and CD8+ T cells. Delivery of the SFV vector expressing dimeric nanobodies by local plasmid electroporation, which could be more easily translated to the clinic, also showed a potent antitumor effect.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Animais , Humanos , Camundongos , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos , Vírus da Floresta de Semliki/genética , Anticorpos de Domínio Único/genética , Receptor de Morte Celular Programada 1/metabolismo
4.
J Immunother Cancer ; 10(8)2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35918123

RESUMO

BACKGROUND: One of the main difficulties of adoptive cell therapies with chimeric antigen receptor (CAR)-T cells in solid tumors is the identification of specific target antigens. The tumor microenvironment can present suitable antigens for CAR design, even though they are not expressed by the tumor cells. We have generated a CAR specific for the splice variant extra domain A (EDA) of fibronectin, which is highly expressed in the tumor stroma of many types of tumors but not in healthy tissues. METHODS: EDA expression was explored in RNA-seq data from different human tumor types and by immunohistochemistry in paraffin-embedded tumor biopsies. Murine and human anti-EDA CAR-T cells were prepared using recombinant retro/lentiviruses, respectively. The functionality of EDA CAR-T cells was measured in vitro in response to antigen stimulation. The antitumor activity of EDA CAR-T cells was measured in vivo in C57BL/6 mice challenged with PM299L-EDA hepatocarcinoma cell line, in 129Sv mice-bearing F9 teratocarcinoma and in NSG mice injected with the human hepatocarcinoma cell line PLC. RESULTS: EDA CAR-T cells recognized and killed EDA-expressing tumor cell lines in vitro and rejected EDA-expressing tumors in immunocompetent mice. Notably, EDA CAR-T cells showed an antitumor effect in mice injected with EDA-negative tumor cells lines when the tumor stroma or the basement membrane of tumor endothelial cells express EDA. Thus, EDA CAR-T administration delayed tumor growth in immunocompetent 129Sv mice challenged with teratocarcinoma cell line F9. EDA CAR-T treatment exerted an antiangiogenic effect and significantly reduced gene signatures associated with epithelial-mesenchymal transition, collagen synthesis, extracellular matrix organization as well as IL-6-STAT5 and KRAS pathways. Importantly, the human version of EDA CAR, that includes the human 41BB and CD3ζ endodomains, exerted strong antitumor activity in NSG mice challenged with the human hepatocarcinoma cell line PLC, which expresses EDA in the tumor stroma and the endothelial vasculature. EDA CAR-T cells exhibited a tropism for EDA-expressing tumor tissue and no toxicity was observed in tumor bearing or in healthy mice. CONCLUSIONS: These results suggest that targeting the tumor-specific fibronectin splice variant EDA with CAR-T cells is feasible and offers a therapeutic option that is applicable to different types of cancer.


Assuntos
Receptores de Antígenos Quiméricos , Teratocarcinoma , Animais , Células Endoteliais , Fibronectinas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T , Teratocarcinoma/metabolismo , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Oncoimmunology ; 11(1): 2070337, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529677

RESUMO

The high metabolic activity and insufficient perfusion of tumors leads to the acidification of the tumor microenvironment (TME) that may inhibit the antitumor T cell activity. We found that pharmacological inhibition of the acid loader chloride/bicarbonate anion exchanger 2 (Ae2), with 4,4'-diisothiocyanatostilbene-2,2'-disulfonicacid (DIDS) enhancedCD4+ andCD8+ T cell function upon TCR activation in vitro, especially under low pH conditions. In vivo, DIDS administration delayed B16OVA tumor growth in immunocompetent mice as monotherapy or when combined with adoptive T cell transfer of OVA-specificT cells. Notably, genetic Ae2 silencing in OVA-specificT cells improvedCD4+/CD8+ T cell function in vitro as well as their antitumor activity in vivo. Similarly, genetic modification of OVA-specificT cells to overexpress Hvcn1, a selectiveH+ outward current mediator that prevents cell acidification, significantly improved T cell function in vitro, even at low pH conditions. The adoptive transfer of OVA-specificT cells overexpressing Hvcn1 exerted a better antitumor activity in B16OVA tumor-bearingmice. Hvcn1 overexpression also improved the antitumor activity of CAR T cells specific for Glypican 3 (GPC3) in mice bearing PM299L-GPC3tumors. Our results suggest that preventing intracellular acidification by regulating the expression of acidifier ion channels such as Ae2 or alkalinizer channels like Hvcn1 in tumor-specificlymphocytes enhances their antitumor response by making them more resistant to the acidic TME.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia Adotiva , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/metabolismo , Animais , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio , Imunoterapia Adotiva/métodos , Camundongos
6.
ACS Biomater Sci Eng ; 7(8): 3774-3782, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34082525

RESUMO

Soft tissue reconstruction has remained a major clinical challenge in dentistry and regenerative medicine. Although current methods have shown partial success, there are several disadvantages associated with these approaches. Gingival mesenchymal stem cells (GMSCs) can be simply obtained in the oral cavity for soft tissue augmentation. Regenerative potential of mesenchymal stem cells (MSCs) encapsulated in hydrogels is well documented. Here, an alginate-gelatin methacrylate (GelMA) hydrogel formulation is developed encapsulating GMSCs within the developed hydrogel. The results confirm that the encapsulated MSCs remain viable within the hydrogel with enhanced collagen deposition. An excisional wound model in mice is utilized to evaluate the in vivo functionality of the GMSC-hydrogel construct for wound healing and soft tissue regeneration. The histology and immunofluorescence analyses confirm the effectiveness of the GMSC-hydrogel in expediting wound healing via enhancing angiogenesis and suppressing local proinflammatory cytokines. Altogether, the findings demonstrate that GMSCs encapsulated in an engineered hydrogel sheet based on alginate and GelMA can be used to expedite wound healing and soft tissue regeneration, with potential applications in plastic and reconstructive surgery as well as dentistry.


Assuntos
Células-Tronco Mesenquimais , Alginatos , Animais , Gelatina , Hidrogéis , Metacrilatos , Camundongos , Oligopeptídeos , Cicatrização
7.
Sci Transl Med ; 12(534)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161103

RESUMO

Cell-laden hydrogels are widely used in tissue engineering and regenerative medicine. However, many of these hydrogels are not optimized for use in the oral environment, where they are exposed to blood and saliva. To address these challenges, we engineered an alginate-based adhesive, photocrosslinkable, and osteoconductive hydrogel biomaterial (AdhHG) with tunable mechanical properties. The engineered hydrogel was used as an injectable mesenchymal stem cell (MSC) delivery vehicle for craniofacial bone tissue engineering applications. Subcutaneous implantation in mice confirmed the biodegradability, biocompatibility, and osteoconductivity of the hydrogel. In a well-established rat peri-implantitis model, application of the adhesive hydrogel encapsulating gingival mesenchymal stem cells (GMSCs) resulted in complete bone regeneration around ailing dental implants with peri-implant bone loss. Together, we have developed a distinct bioinspired adhesive hydrogel with tunable mechanical properties and biodegradability that effectively delivers patient-derived dental-derived MSCs. The hydrogel is photocrosslinkable and, due to the presence of MSC aggregates and hydroxyapatite microparticles, promotes bone regeneration for craniofacial tissue engineering applications.


Assuntos
Adesivos , Hidrogéis , Animais , Regeneração Óssea , Osso e Ossos , Humanos , Camundongos , Ratos , Engenharia Tecidual
8.
ACS Nano ; 13(4): 3830-3838, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30895772

RESUMO

Periodontitis is a common chronic inflammatory disease that affects tooth-supporting tissues. We engineer a multifunctional periodontal membrane for the guided tissue regeneration of lost periodontal tissues. The major drawback of current periodontal membranes is the lack of tissue regeneration properties. Here, a series of nanofibrous membranes based on poly(ε-caprolactone) with tunable biochemical and biophysical properties were developed for periodontal tissue regeneration. The engineered membranes were surface coated using biomimetic polydopamine to promote the adhesion of therapeutic proteins and cells. We demonstrate successful cellular localization on the surface of the engineered membrane by morphological patterning. Polydopamine accelerates osteogenic differentiation of dental-derived stem cells by promoting hydroxyapatite mineralization. Such multiscale designs can mimic the complex extracellular environment of periodontal tissue and serve as functional tissue constructs for periodontal regeneration. In a periodontal defect model in rats, our engineered periodontal membrane successfully promoted the regeneration of periodontal tissue and bone repair. Altogether, our data demonstrate that our biomimetic membranes have potential as protein/cell delivery platforms for periodontal tissue engineering.


Assuntos
Indóis/química , Células-Tronco Mesenquimais/citologia , Nanofibras/química , Periodonto/citologia , Polímeros/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Regeneração Óssea , Células Cultivadas , Humanos , Masculino , Membranas Artificiais , Nanofibras/ultraestrutura , Osteogênese , Poliésteres/química , Ratos , Alicerces Teciduais/química
9.
Front Immunol ; 10: 2990, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921216

RESUMO

Adoptive immunotherapy with ex vivo-expanded tumor-infiltrating lymphocytes (TILs) has achieved objective clinical responses in a significant number of patients with cancer. The failure of many patients to develop long-term tumor control may be, in part, due to exhaustion of transferred T cells in the presence of a hostile tumor microenvironment. In several tumor types, growth and survival of carcinoma cells appear to be sustained by a network of receptors/ligands of the ErbB family. We speculated that if transferred T cells could benefit from EGFR ligands produced by the tumor, they might proliferate better and exert their anti-tumor activities more efficiently. We found that CD8+ T cells transduced with a retrovirus to express EGFR responded to EGFR ligands activating the EGFR signaling pathway. These EGFR-expressing effector T cells proliferated better and produced more IFN-γ and TNF-α in the presence of EGFR ligands produced by tumor cells in vitro. EGFR-expressing CD8 T cells from OT-1 mice were more efficient killing B16-OVA cells than control OT-1 CD8 T cells. Importantly, EGFR-expressing OT-1 T cells injected into B16-OVA tumor bearing mice were recruited into the tumor, expressed lower levels of the exhaustion markers PD1, TIGIT, and LAG3, and were more efficient in delaying tumor growth. Our results suggest that genetic modification of CD8+ T cells to express EGFR might be considered in immunotherapeutic strategies based on adoptive transfer of anti-tumor T cells against cancers expressing EGFR ligands.


Assuntos
Transferência Adotiva , Linfócitos T CD8-Positivos , Receptores ErbB , Vetores Genéticos , Neoplasias , Retroviridae , Transdução Genética , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/transplante , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/imunologia , Feminino , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia
10.
Adv Healthc Mater ; 6(24)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29076281

RESUMO

Repair or regeneration of damaged nerves is still a challenging clinical task in reconstructive surgeries and regenerative medicine. Here, it is demonstrated that periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) isolated from adult human periodontal and gingival tissues assume neuronal phenotype in vitro and in vivo via a subcutaneous transplantation model in nude mice. PDLSCs and GMSCs are encapsulated in a 3D scaffold based on alginate and hyaluronic acid hydrogels capable of sustained release of human nerve growth factor (NGF). The elasticity of the hydrogels affects the proliferation and differentiation of encapsulated MSCs within scaffolds. Moreover, it is observed that PDLSCs and GMSCs are stained positive for ßIII-tubulin, while exhibiting high levels of gene expression related to neurogenic differentiation (ßIII-tubulin and glial fibrillary acidic protein) via quantitative polymerase chain reaction (qPCR). Western blot analysis shows the importance of elasticity of the matrix and the presence of NGF in the neurogenic differentiation of encapsulated MSCs. In vivo, immunofluorescence staining for neurogenic specific protein markers confirms islands of dense positively stained structures inside transplanted hydrogels. As far as it is known, this study is the first demonstration of the application of PDLSCs and GMSCs as promising cell therapy candidates for nerve regeneration.


Assuntos
Alginatos/química , Gengiva/citologia , Ácido Hialurônico/química , Células-Tronco Mesenquimais/citologia , Regeneração Nervosa , Ligamento Periodontal/citologia , Alicerces Teciduais , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Hidrogéis/química , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Nus , Modelos Animais , Adulto Jovem
11.
J Biomed Mater Res A ; 105(11): 2957-2967, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28639378

RESUMO

Mesenchymal stem cells (MSCs) derived from dental and orofacial tissues provide an alternative therapeutic option for craniofacial bone tissue regeneration. However, there is still a need to improve stem cell delivery vehicles to regulate the fate of the encapsulated MSCs for high quality tissue regeneration. Matrix elasticity plays a vital role in MSC fate determination. Here, we have prepared various hydrogel formulations based on alginate and gelatin methacryloyl (GelMA) and have encapsulated gingival mesenchymal stem cells (GMSCs) and human bone marrow MSCs (hBMMSCs) within these fabricated hydrogels. We demonstrate that addition of the GelMA to alginate hydrogel reduces the elasticity of the hydrogel mixture. While presence of GelMA in an alginate-based scaffold significantly increased the viability of encapsulated MSCs, increasing the concentration of GelMA downregulated the osteogenic differentiation of encapsulated MSCs in vitro due to decrease in the stiffness of the hydrogel matrix. The osteogenic suppression was rescued by addition of a potent osteogenic growth factor such as rh-BMP-2. In contrast, MSCs encapsulated in alginate hydrogel without GelMA were successfully osteo-differentiated without the aid of additional growth factors, as confirmed by expression of osteogenic markers (Runx2 and OCN), as well as positive staining using Xylenol orange. Interestingly, after two weeks of osteo-differentiation, hBMMSCs and GMSCs encapsulated in alginate/GelMA hydrogels still expressed CD146, an MSC surface marker, while MSCs encapsulated in alginate hydrogel failed to express any positive staining. Altogether, our findings suggest that it is possible to control the fate of encapsulated MSCs within hydrogels by tuning the mechanical properties of the matrix. We also reconfirmed the important role of the presence of inductive signals in guiding MSC differentiation. These findings may enable the design of new multifunctional scaffolds for spatial and temporal control over the fate and function of stem cells even post-transplantation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2957-2967, 2017.


Assuntos
Alginatos/química , Gelatina/química , Gengiva/citologia , Hidrogéis/química , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Células Imobilizadas/citologia , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Masculino , Osteogênese , Engenharia Tecidual/métodos
12.
Development ; 142(21): 3734-45, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26395480

RESUMO

Disrupted ERK1/2 signaling is associated with several developmental syndromes in humans. To understand the function of ERK2 (MAPK1) in the postmigratory neural crest populating the craniofacial region, we studied two mouse models: Wnt1-Cre;Erk2(fl/fl) and Osr2-Cre;Erk2(fl/fl). Wnt1-Cre;Erk2(fl/fl) mice exhibited cleft palate, malformed tongue, micrognathia and mandibular asymmetry. Cleft palate in these mice was associated with delay/failure of palatal shelf elevation caused by tongue malposition and micrognathia. Osr2-Cre;Erk2(fl/fl) mice, in which the Erk2 deletion is restricted to the palatal mesenchyme, did not display cleft palate, suggesting that palatal clefting in Wnt1-Cre;Erk2(fl/fl) mice is a secondary defect. Tongues in Wnt1-Cre;Erk2(fl/fl) mice exhibited microglossia, malposition, disruption of the muscle patterning and compromised tendon development. The tongue phenotype was extensively rescued after culture in isolation, indicating that it might also be a secondary defect. The primary malformations in Wnt1-Cre;Erk2(fl/fl) mice, namely micrognathia and mandibular asymmetry, are linked to an early osteogenic differentiation defect. Collectively, our study demonstrates that mutation of Erk2 in neural crest derivatives phenocopies the human Pierre Robin sequence and highlights the interconnection of palate, tongue and mandible development. Because the ERK pathway serves as a crucial point of convergence for multiple signaling pathways, our study will facilitate a better understanding of the molecular regulatory mechanisms of craniofacial development.


Assuntos
Sistema de Sinalização das MAP Quinases , Crista Neural/metabolismo , Síndrome de Pierre Robin/embriologia , Síndrome de Pierre Robin/metabolismo , Animais , Fissura Palatina/patologia , Feminino , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Crista Neural/patologia , Síndrome de Pierre Robin/patologia , Língua/anormalidades
13.
PLoS One ; 9(4): e94607, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24736728

RESUMO

The aims of the study were to establish the prevalence of high bone mass (HBM) in a cohort of Spanish postmenopausal women (BARCOS) and to assess the contribution of LRP5 and DKK1 mutations and of common bone mineral density (BMD) variants to a HBM phenotype. Furthermore, we describe the expression of several osteoblast-specific and Wnt-pathway genes in primary osteoblasts from two HBM cases. A 0.6% of individuals (10/1600) displayed Z-scores in the HBM range (sum Z-score >4). While no mutation in the relevant exons of LRP5 was detected, a rare missense change in DKK1 was found (p.Y74F), which cosegregated with the phenotype in a small pedigree. Fifty-five BMD SNPs from Estrada et al. [NatGenet 44:491-501,2012] were genotyped in the HBM cases to obtain risk scores for each individual. In this small group of samples, Z-scores were found inversely related to risk scores, suggestive of a polygenic etiology. There was a single exception, which may be explained by a rare penetrant genetic variant, counterbalancing the additive effect of the risk alleles. The expression analysis in primary osteoblasts from two HBM cases and five controls suggested that IL6R, DLX3, TWIST1 and PPARG are negatively related to Z-score. One HBM case presented with high levels of RUNX2, while the other displayed very low SOX6. In conclusion, we provide evidence of lack of LRP5 mutations and of a putative HBM-causing mutation in DKK1. Additionally, we present SNP genotyping and expression results that suggest additive effects of several genes for HBM.


Assuntos
Densidade Óssea/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Pós-Menopausa/genética , Pós-Menopausa/fisiologia , Idoso , Alelos , Sequência de Aminoácidos , Animais , Desenvolvimento Ósseo/genética , Estudos de Coortes , Feminino , Regulação da Expressão Gênica , Loci Gênicos/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação , Osteoblastos/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Espanha , Via de Sinalização Wnt/genética
15.
J Bone Miner Res ; 27(4): 950-3, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22190259

RESUMO

Fragility fractures resulting from low-trauma events such as a fall from standing height are associated with osteoporosis and are very common in older people, especially women. Three single nucleotide polymorphisms (SNPs) at the COL1A1 gene (rs1107946, rs11327935, and rs1800012) have been widely studied and previously associated with bone mineral density (BMD) and fracture. A rare haplotype (T-delT-T) of these three SNPs was found to be greatly overrepresented in fractured individuals compared with nonfractured controls, thus becoming a good candidate for predicting increased fracture risk. The aim of our study was to assess the association of this haplotype with fracture risk in Spanish individuals. We recruited two independent groups of ∼100 patients with hip fracture (a total of 203 individuals) and compared the genotype and haplotype distributions of the three SNPs in the fractured patients with those of 397 control individuals from the BARCOS Spanish cohort. We found no association with risk of fracture at the genotype level for any of the SNPs, and no differences in the SNP frequencies between the two groups. At the haplotype level, we found no association between the T-delT-T haplotype and fracture. However, we observed a small but significant (p = 0.03) association with another rare haplotype, G-insT-T, which was slightly overrepresented in the patient group.


Assuntos
Colágeno Tipo I/genética , Haplótipos/genética , Fraturas do Quadril/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
16.
J Bone Miner Res ; 26(5): 1133-44, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21542013

RESUMO

LRP5 is an osteoporosis susceptibility gene. Association analyses reveal that individual single-nucleotide polymorphisms (SNPs) determine variation in bone mineral density (BMD) among individuals as well as fracture risk. In a previous study, we identified a lumbar spine BMD-associated SNP, rs312009, located in the LRP5 5' region. A RUNX2 binding site was identified in this region by gel-shift experiments. Here we test the functionality of this SNP and examine whether RUNX2 is indeed a regulator of LRP5 expression. Gene reporter assays were used to test rs312009 functionality. Bioinformatic predictive tools and gel-shift and gene reporter assays were used to identify and characterize additional RUNX2 binding elements in the 3.3-kb region upstream of LRP5. Allelic differences in the transcriptional activity of rs312009 were observed in two osteoblastic cell lines, the T allele being a better transcriber than the C allele. RUNX2 cotransfection in HeLa cells revealed that the LRP5 5' region responded to RUNX2 in a dose-dependent manner and that the previously identified RUNX2 binding site participated in this response. Also, RUNX2 inhibition by RNAi led to nearly 60% reduction of endogenous LRP5 mRNA in U-2 OS cells. Four other RUNX2 binding sites were identified in the 5' region of LRP5. Luciferase experiments revealed the involvement of each of them in the RUNX2 response. The allelic differences observed point to the involvement of rs312009 as a functional SNP in the observed association. To our knowledge, this is the first time that the direct action of RUNX2 on LRP5 has been described. This adds evidence to previously described links between two important bone-regulating systems: the RUNX2 transcription-factor cascade and the Wnt signaling pathway.


Assuntos
Densidade Óssea/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Regulação da Expressão Gênica , Proteínas Relacionadas a Receptor de LDL/genética , Polimorfismo de Nucleotídeo Único/genética , Transcrição Gênica , Pareamento de Bases/genética , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Dados de Sequência Molecular , Mutação/genética , Osteoblastos/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos de Resposta/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...