Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Chem ; 18(9): 970-979, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35114926

RESUMO

BACKGROUND: HIV-1 subtype C protease is a strategic target for antiretroviral treatment. However, resistance to protease inhibitors appears after months of treatment. Chromones and 2- biscoumarin derivatives show potential for inhibition of the HIV- subtype C protease. OBJECTIVE: Different heterocyclic structures from the ZINC database were docked against Human Immunodeficiency Virus-1 (HIV) subtype C protease crystal structure 2R5Q and 2R5P. The 5 best molecules were selected to be docked against 62 homology models based on HIV-protease sequences from infants failing antiretroviral protease treatment. This experimentation was performed with two molecular docking programs: Autodock and Autodock Vina. These molecules were modified by substituting protons with different moieties, and the derivatives were docked against the same targets. Ligand-protein interactions, physical/chemical proprieties of the molecules, and dynamics simulations were analyzed. METHODS: Docking of all of the molecules was performed to find out the binding sites of HIV-1 subtype C proteases. An in-house script was made to substitute protons of molecules with different moieties. According to the Lipinski rule of five, physical and chemical properties were determined. Complexes of certain ligands-protease were compared to the protein alone in molecular dynamics simulations. RESULTS: From the first docking results, the 5 best (lowest energy) ligands (dibenz[a,h]acridine, dibenz[a, i]acridine, NSC114903, dibenz[c,h]acridine, benzo[a]acridine) were selected. The binding energy of the modified ligands increased, including the poorest-performing molecules. A correlation between nature, the position, and the resulting binding energy was observed. According to the Lipinski rules, the physico-chemical characteristics of the five best-modified ligands are ideal for oral bioavailability. Molecular dynamics simulations show that some lead-protease complexes were stable. CONCLUSION: Dibenz[a,h]acridine, dibenz[a, i]acridine, NSC114903, dibenz[c,h]acridine, benzo[ a]acridine and their derivatives might be considered as promising HIV-1 subtype C protease inhibitors. This could be confirmed through synthesis and subsequent in vitro assays.


Assuntos
Inibidores da Protease de HIV , HIV-1 , Farmacorresistência Viral , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Inibidores da Protease de HIV/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Humanos , Ligantes , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...