Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 552: 359-371, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31132638

RESUMO

Understanding how surface properties determine the mobility of a fakir droplet on patterned surfaces, which is typically characterized by advancing and receding contact angles, is important in the design of superhydrophobic surfaces for tailored applications. However, most analytical models of the contact angles are limited to a specific motion direction and surface type, e.g., receding on a pillared surface. Although it was suggested that the contact angles should be determined by the local configuration and dynamics of the droplet boundary, their link remains vague due to the lack of detailed visualizations. In this study, the contact line dynamics of a fakir droplet in both advancing and receding motions on not only micropillared but also micropored surfaces are visualized in reflection interference contrast microscopy along with the contact angle measurement. Based on the energy change induced by the displacement of a contact line and the deformation of a liquid-gas interface in between contact lines, theoretical models of the contact angles to encompass the two different motion directions and surface types are formulated. Moreover, further generalized models are established to serve as effective analytical models to predict the contact angles only based on the given structure dimensions and the inherent surface hydrophobicity.

2.
J Colloid Interface Sci ; 543: 122-129, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30782518

RESUMO

It was experimentally shown that a depinning force of a receding droplet on a micropillared superhydrophobic surface has an apparently linear correlation with the maximal three-phase contact line attainable along an actual droplet boundary. However, the experimental observation has not yet been supported by any theoretical basis or analysis. This study establishes an analytical model that theoretically supports the experimental observation on the basis of the dynamics of a contact line. The depinning force of a receding droplet was experimentally measured in evaporation on micropillared superhydrophobic surfaces with varying structure pitches but a fixed size. The analytical model was established by considering the energy dissipated by the displacement of a microscopic contact line on pillar tops and the energy consumed for the distortion of a liquid-gas interface between pillar tops. The model shows that the depinning force can theoretically be estimated by the physical dimensions of pillars and the intrinsic hydrophobicity of the surface, showing excellent agreement with the experimental results. Especially, the model indicates that the depinning force is fundamentally determined and practically controllable by the normalized maximal contact line at the droplet boundary, which can effectively be represented as the ratio of the pillar top perimeter to pitch.

3.
Langmuir ; 34(46): 13821-13827, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30360623

RESUMO

Superhydrophobic surfaces have gained tremendous attention for icephobic properties, including anti-icing and deicing. The former is about how much a surface can delay the ice formation, whereas the latter is about how easy the surface can let the ice go off after freezing. In this study, superhydrophobic surfaces with different surface roughnesses and wettabilities were tested for both anti-icing and deicing purposes to investigate their correlation in association with the different surface properties. Anti-icing test was conducted by utilizing an icing wind tunnel to see how much ice gets accumulated on the surfaces in a dynamic condition (i.e., impacting supercooled water droplets by forced wind). For the deicing test, sessile droplets were frozen on the surfaces in a static condition (i.e., no wind) and then the shear adhesion forces were measured to disconnect the frozen ices off from the surfaces. The experimental results show that higher anti-icing efficacy does not necessarily mean higher deicing efficacy because of the different icing mechanisms. Although a superhydrophobic surface with a lower depinning force (or contact angle hysteresis) delays the ice accumulation in a dynamic condition more effectively, the same surface can require higher shear adhesion force for ice grown in a static condition where condensation and wetting state of a droplet are the key factors.

4.
Langmuir ; 33(43): 12016-12027, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28982237

RESUMO

The movement of a single air bubble on an inclined hydrophobic surface submerged in water, including both the upward- and downward-facing sides of the surface, was investigated. A planar Teflon sheet with an apparent contact angle of a sessile water droplet of 106° was used as a hydrophobic surface. The volume of a bubble and the inclination angle of a Teflon sheet varied in the ranges 5-40 µL and 0-45°, respectively. The effects of the bubble volume on the adhesion and dynamics of the bubble were studied experimentally on the facing-up and facing-down surfaces of the submerged hydrophobic Teflon sheet, respectively, and compared. The result shows that the sliding angle has an inverse relationship with the bubble volume for both the upward- and downward-facing surfaces. However, at the same given volume, the bubble on the downward-facing surface spreads over a larger area of the hydrophobic surface than the upward-facing surface due to the greater hydrostatic pressure acting on the bubble on the downward-facing surface. This makes the lateral adhesion force of the bubble greater and requires a larger inclination angle to result in sliding.

5.
ACS Appl Mater Interfaces ; 5(23): 12617-23, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24191775

RESUMO

We report on the use of layer-by-layer (LbL) hydrogels, composed of amphiphilic polymers that undergo reversible collapse-dissolution transition in solutions as a function of pH, to induce sharp, large-amplitude wetting transition at microstructured surfaces. Surface hydrogels were composed of poly(2-alkylacrylic acids) (PaAAs) of varied hydrophobicity, i.e., poly(methacrylic acid) (PMAA), poly(2-ethylacrylic acid) (PEAA), poly(2-n-propylacrylic acid) (PPAA) and poly(2-n-butylacrylic acid) (PBAA). When deposited at a micropillar-patterned silicon substrate, hydrophilic PMAA LbL hydrogels supported complete surface wetting (contact angle, CA, of 0°), whereas PEAA, PPAA, and PBAA ultrathin coatings supported large-amplitude wetting transitions, with CA changes from 110 to 125° at acidic to 0° at basic pH values, and the transition pH increasing from 6.2 to 8.4 with increased polyacid hydrophobicity. At acidic pHs, droplets showed a large hysteresis in CA (a "sticky droplet" behavior), and remained in the Wenzel state. The fact that CA changes for wetting-nonwetting transitions occurred at values close to physiologic pH makes these coatings promising for controlling flow and bioadhesion using external stimuli. Finally, we show that the surface wettability transitions can be used to detect positively charged analytes (such as gentamicin) in solution via large changes in CA associated with adsorption of analytes within the hydrogels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...