Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 8(6): e0051723, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37902330

RESUMO

IMPORTANCE: Microbial populations swiftly adapt to changing environments through horizontal gene transfer. While the mechanisms of gene transfer are well known, the impact of environmental conditions on the selection of transferred gene functions remains less clear. We investigated ICEs, specifically the ICEclc-type, in Pseudomonas aeruginosa clinical isolates. Our findings revealed co-evolution between ICEs and their hosts, with ICE transfers occurring within strains. Gene functions carried by ICEs are positively selected, including potential virulence factors and heavy metal resistance. Comparison to publicly available P. aeruginosa genomes unveiled widespread antibiotic-resistance determinants within ICEclc clades. Thus, the ubiquitous ICEclc family significantly contributes to P. aeruginosa's adaptation and fitness in diverse environments.


Assuntos
Transferência Genética Horizontal , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética
2.
mBio ; 14(2): e0353822, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36939321

RESUMO

Social bees harbor conserved gut microbiotas that may have been acquired in a common ancestor of social bees and subsequently codiversified with their hosts. However, most of this knowledge is based on studies on the gut microbiotas of honey bees and bumblebees. Much less is known about the gut microbiotas of the third and most diverse group of social bees, the stingless bees. Specifically, the absence of genomic data from their microbiotas presents an important knowledge gap in understanding the evolution and functional diversity of the social bee microbiota. Here, we combined community profiling with culturing and genome sequencing of gut bacteria from six neotropical stingless bee species from Brazil. Phylogenomic analyses show that most stingless bee gut isolates form deep-branching sister clades of core members of the honey bee and bumblebee gut microbiota with conserved functional capabilities, confirming the common ancestry and ecology of their microbiota. However, our bacterial phylogenies were not congruent with those of the host, indicating that the evolution of the social bee gut microbiota was not driven by strict codiversification but included host switches and independent symbiont gain and losses. Finally, as reported for the honey bee and bumblebee microbiotas, we found substantial genomic divergence among strains of stingless bee gut bacteria, suggesting adaptation to different host species and glycan niches. Our study offers first insights into the genomic diversity of the stingless bee microbiota and highlights the need for broader samplings to understand the evolution of the social bee gut microbiota. IMPORTANCE Stingless bees are the most diverse group of the corbiculate bees and represent important pollinator species throughout the tropics and subtropics. They harbor specialized microbial communities in their gut that are related to those found in honey bees and bumblebees and that are likely important for bee health. Few bacteria have been cultured from the gut of stingless bees, which has prevented characterization of their genomic diversity and functional potential. Here, we established cultures of major members of the gut microbiotas of six stingless bee species and sequenced their genomes. We found that most stingless bee isolates belong to novel bacterial species distantly related to those found in honey bees and bumblebees and encoding similar functional capabilities. Our study offers a new perspective on the evolution of the social bee gut microbiota and presents a basis for characterizing the symbiotic relationships between gut bacteria and stingless bees.


Assuntos
Microbioma Gastrointestinal , Microbiota , Abelhas , Animais , Bactérias/genética , Filogenia , Genômica
3.
Clin Microbiol Infect ; 27(8): 1167.e9-1167.e17, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33031951

RESUMO

OBJECTIVES: New automated modules are required to provide fully automated solutions in diagnostic microbiology laboratories. We evaluated the performance of a Becton Dickinson Kiestra™ IdentifA/SusceptA prototype for MALDI-TOF identification (ID) and Phoenix™ antibiotic susceptibility testing (AST). METHODS: The performance of the IdentifA/SusceptA coupled prototype was compared with manual processing for MALDI-TOF ID on 1302 clinical microbial isolates or ATCC strains and for Phoenix™ M50 AST on 484 strains, representing 61 species. RESULTS: Overall, the IdentifA exhibited similar ID performances than manual spotting. Higher performances were observed for Gram-negative bacteria with an ID at the species level (score >2) of 96.5% (369/382) and 86.9% (334/384), respectively. A significantly better performance was observed with the IdentifA (95.2%, 81/85) compared with manual spotting (75.2%, 64/85) from colonies on MacConkey agar. Contrariwise, the IdentifA exhibited lower ID performances at the species level than manual processing for streptococci (76.1%, 96/126 compared with 92%, 115/125), coagulase-negative staphylococci (73.3%, 44/60 compared with 90%, 54/60) and yeasts (41.3%, 19/46 compared with 78.2%, 36/46). Staphylococcus aureus and enterococci were similarly identified by the two approaches, with ID rates of 92% (65/70) for the IdentifA and 92.7%, (64/69) for manual processing and 94.8%, (55/58) for the IdentifA and 98.2%, (57/58) for manual processing, respectively. The SusceptA exhibited an AST overall essential agreement of 98.82% (6863/6945), a category agreement of 98.86% (6866/6945), 1.05% (6/570) very major errors, 0.16% (10/6290) major errors, and 0.91% (63/6945) minor errors compared to the reference AST. CONCLUSIONS: Overall, the automated IdentifA/SusceptA exhibited high ID and AST performances.


Assuntos
Bactérias Gram-Negativas/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Antibacterianos/farmacologia , Automação Laboratorial , Enterococcus/efeitos dos fármacos , Staphylococcus/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Leveduras/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...