Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Eur J Hum Genet ; 32(7): 804-812, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38486025

RESUMO

The ACTA2 gene codes for alpha-smooth muscle actin, a critical component of the contractile apparatus of the vascular smooth muscle cells. Autosomal dominant variants in the ACTA2 gene have been associated to familial non-syndromic thoracic aortic aneurysm/dissection (TAAD). They are thought to act through a dominant-negative mechanism. These variants display incomplete penetrance and variable expressivity, complicating the validation of ACTA2 variants pathogenicity by family segregation studies. In this study, we developed a yeast based assay to test putative TAAD-associated ACTA2 variants. We identified five new heterozygous ACTA2 missense variants in TAAD patients through next generation sequencing. We decided to test their pathogenicity in Saccharomyces cerevisiae, since yeast actin is very similar to human alpha-smooth muscle actin, and the residues at which the TAAD-associated variants occur in ACTA2 are well conserved. A wild type yeast strain was transformed with a vector expressing the different mutant alleles, to model the heterozygous condition of patients. Then, we evaluated yeast growth by spot test and cytoskeletal and mitochondrial morphology by fluorescence microscopy. We found that mutant yeast strains displayed only mild growth defects but a significant increase in the percentage of cells with abnormal mitochondrial distribution and abnormal organization of the actin cytoskeleton compared to controls. All variants appeared to interfere with the activity of wild type actin in yeast, suggesting a dominant-negative pathogenic mechanism. Our results demonstrate the utility of using the yeast actin model system to validate the pathogenicity of TAAD-associated ACTA2 variants.


Assuntos
Actinas , Mutação de Sentido Incorreto , Saccharomyces cerevisiae , Humanos , Actinas/genética , Actinas/metabolismo , Saccharomyces cerevisiae/genética , Masculino , Feminino , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Pessoa de Meia-Idade , Heterozigoto , Idoso , Mitocôndrias/genética
2.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339189

RESUMO

Nqo15 is a subunit of respiratory complex I of the bacterium Thermus thermophilus, with strong structural similarity to human frataxin (FXN), a protein involved in the mitochondrial disease Friedreich's ataxia (FRDA). Recently, we showed that the expression of recombinant Nqo15 can ameliorate the respiratory phenotype of FRDA patients' cells, and this prompted us to further characterize both the Nqo15 solution's behavior and its potential functional overlap with FXN, using a combination of in silico and in vitro techniques. We studied the analogy of Nqo15 and FXN by performing extensive database searches based on sequence and structure. Nqo15's folding and flexibility were investigated by combining nuclear magnetic resonance (NMR), circular dichroism, and coarse-grained molecular dynamics simulations. Nqo15's iron-binding properties were studied using NMR, fluorescence, and specific assays and its desulfurase activation by biochemical assays. We found that the recombinant Nqo15 isolated from complex I is monomeric, stable, folded in solution, and highly dynamic. Nqo15 does not share the iron-binding properties of FXN or its desulfurase activation function.


Assuntos
Frataxina , Ataxia de Friedreich , Humanos , Complexo I de Transporte de Elétrons/metabolismo , Thermus thermophilus/metabolismo , Simulação de Dinâmica Molecular , Ferro/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ataxia de Friedreich/metabolismo
4.
Cell Death Dis ; 14(12): 805, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062036

RESUMO

Friedreich ataxia (FRDA) is a rare, inherited neurodegenerative disease caused by an expanded GAA repeat in the first intron of the FXN gene, leading to transcriptional silencing and reduced expression of frataxin. Frataxin participates in the mitochondrial assembly of FeS clusters, redox cofactors of the respiratory complexes I, II and III. To date it is still unclear how frataxin deficiency culminates in the decrease of bioenergetics efficiency in FRDA patients' cells. We previously demonstrated that in healthy cells frataxin is closely attached to the mitochondrial cristae, which contain both the FeS cluster assembly machinery and the respiratory chain complexes, whereas in FRDA patients' cells with impaired respiration the residual frataxin is largely displaced in the matrix. To gain novel insights into the function of frataxin in the mitochondrial pathophysiology, and in the upstream metabolic defects leading to FRDA disease onset and progression, here we explored the potential interaction of frataxin with the FeS cluster-containing respiratory complexes I, II and III. Using healthy cells and different FRDA cellular models we found that frataxin interacts with these three respiratory complexes. Furthermore, by EPR spectroscopy, we observed that in mitochondria from FRDA patients' cells the decreased level of frataxin specifically affects the FeS cluster content of complex I. Remarkably, we also found that the frataxin-like protein Nqo15 from T. thermophilus complex I ameliorates the mitochondrial respiratory phenotype when expressed in FRDA patient's cells. Our data point to a structural and functional interaction of frataxin with complex I and open a perspective to explore therapeutic rationales for FRDA targeted to this respiratory complex.


Assuntos
Ataxia de Friedreich , Doenças Neurodegenerativas , Humanos , Transporte de Elétrons , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Membranas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo
5.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139294

RESUMO

The Transactivating response (TAR) element DNA-binding of 43 kDa (TDP-43) is mainly implicated in the regulation of gene expression, playing multiple roles in RNA metabolism. Pathologically, it is implicated in amyotrophic lateral sclerosis and in a class of neurodegenerative diseases broadly going under the name of frontotemporal lobar degeneration (FTLD). A common hallmark of most forms of such diseases is the presence of TDP-43 insoluble inclusions in the cell cytosol. The molecular mechanisms of TDP-43-related cell toxicity are still unclear, and the contribution to cell damage from either loss of normal TDP-43 function or acquired toxic properties of protein aggregates is yet to be established. Here, we investigate the effects on cell viability of FTLD-related TDP-43 mutations in both yeast and mammalian cell models. Moreover, we focus on nucleolin (NCL) gene, recently identified as a genetic suppressor of TDP-43 toxicity, through a thorough structure/function characterization aimed at understanding the role of NCL domains in rescuing TDP-43-induced cytotoxicity. Using functional and biochemical assays, our data demonstrate that the N-terminus of NCL is necessary, but not sufficient, to exert its antagonizing effects on TDP-43, and further support the relevance of the DNA/RNA binding central region of the protein. Concurrently, data suggest the importance of the NCL nuclear localization for TDP-43 trafficking, possibly related to both TDP-43 physiology and toxicity.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Degeneração Lobar Frontotemporal , Nucleolina , Humanos , Esclerose Lateral Amiotrófica/metabolismo , DNA , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Nucleolina/metabolismo , RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Pediatr Neurol ; 148: 152-156, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722301

RESUMO

Loss of function of the STRADA gene, an upstream mTOR inhibitor, causes a rare neurodevelopmental disorder characterized by polyhydramnios, megalencephaly, and symptomatic epilepsy (PMSE syndrome). Patients display a homogeneous phenotype including early-onset drug-resistant epilepsy, severe psychomotor delay, multisystemic comorbidities, and increased risk of premature death. The administration of sirolimus, an mTOR inhibitor, is helpful in controlling seizures in this syndrome. We report the electroclinical phenotype of two novel patients and the development of a yeast model to validate the pathogenicity of missense variants. Patient 1 harbored a missense STRADA variant and had a peculiar electroclinical phenotype with a relatively mild epilepsy course. Patient 2 harbored a truncating STRADA variant and showed a typical PMSE phenotype and a favorable response to early treatment with sirolimus. When we modeled the p.(Ser264Arg) STRADA change in its yeast homolog SPS1, it impaired SPS1 function. The results underlie the importance of a timely molecular diagnosis in these patients and show that yeast is a simple yet effective model to validate the pathogenicity of missense variants.

7.
Cancers (Basel) ; 14(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35205757

RESUMO

Functional impairment of the von Hippel-Lindau tumor suppressor (pVHL) is causative of a familiar increased risk of developing cancer. As an E3 substrate recognition particle, pVHL marks the hypoxia inducible factor 1α (HIF-1α) for degradation in normoxic conditions, thus acting as a key regulator of both acute and chronic cell adaptation to hypoxia. The male mice model carrying VHL gene conditional knockout presents significant abnormalities in testis development paired with defects in spermatogenesis and infertility, indicating that pVHL exerts testis-specific roles. Here we aimed to explore whether pVHL could have a similar role in humans by performing a testis-tissue library screening complemented with in-depth bioinformatics analysis. We identified 55 novel pVHL binding proteins directly involved in spermatogenesis, cell differentiation and reproductive metabolism. In addition, computational investigation of these new interactors identified multiple pVHL-specific binding motifs and demonstrated that somatic mutations described in human cancers reside in these binding regions. Collectively, these findings suggest that, in addition to its role in cancer formation, pVHL may also be pivotal in normal gonadal development in humans.

8.
Front Cell Neurosci ; 15: 625665, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912014

RESUMO

TDP-43 is a nuclear protein involved in pivotal processes, extensively studied for its implication in neurodegenerative disorders. TDP-43 cytosolic inclusions are a common neuropathologic hallmark in amyotrophic lateral sclerosis (ALS) and related diseases, and it is now established that TDP-43 misfolding and aggregation play a key role in their etiopathology. TDP-43 neurotoxic mechanisms are not yet clarified, but the identification of proteins able to modulate TDP-43-mediated damage may be promising therapeutic targets for TDP-43 proteinopathies. Here we show by the use of refined yeast models that the nucleolar protein nucleolin (NCL) acts as a potent suppressor of TDP-43 toxicity, restoring cell viability. We provide evidence that NCL co-expression is able to alleviate TDP-43-induced damage also in human cells, further supporting its beneficial effects in a more consistent pathophysiological context. Presented data suggest that NCL could promote TDP-43 nuclear retention, reducing the formation of toxic cytosolic TDP-43 inclusions.

9.
Cell Rep ; 32(9): 108095, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877677

RESUMO

The mitochondrial permeability transition pore (PTP) is a Ca2+-activated channel that plays a key role in cell death. Thiol oxidation facilitates PTP opening, yet the targets and molecular mechanisms still await a definition. Here, we investigate the role of C141 of F-ATP synthase oligomycin sensitivity conferral protein (OSCP) subunit in PTP modulation by oxidation. We find that the OSCP C141S mutation confers resistance to PTP opening and cell death by diamide and MitoParaquat only when cyclophilin D (CyPD) has been ablated, a protective role that can be explained by CyPD shielding C141 from oxidants. The mutation decreases apoptosis in zebrafish embryos, indicating that this OSCP residue is involved in development. Site-directed mutagenesis in yeast suggests that other conserved cysteines in the α, γ, and c subunits of F-ATP synthase are not involved in PTP modulation. Thus, OSCP provides a strategic site that regulates PTP opening by the interplay between CyPD (un)binding and thiol oxidation-reduction.


Assuntos
Cisteína/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Permeabilidade , Humanos
10.
Sci Rep ; 10(1): 15850, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985545

RESUMO

Mutations of the von Hippel-Lindau (pVHL) tumor suppressor are causative of a familiar predisposition to develop different types of cancer. pVHL is mainly known for its role in regulating hypoxia-inducible factor 1 α (HIF-1α) degradation, thus modulating the hypoxia response. There are different pVHL isoforms, including pVHL30 and pVHL19. However, little is known about isoform-specific functions and protein-protein interactions. Integrating in silico predictions with in vitro and in vivo assays, we describe a novel interaction between pVHL and mouse double minute 2 homolog (MDM2). We found that pVHL30, and not pVHL19, forms a complex with MDM2, and that the N-terminal acidic tail of pVHL30 is required for its association with MDM2. Further, we demonstrate that an intrinsically disordered region upstream of the tetramerization domain of MDM2 is responsible for its isoform-specific association with pVHL30. This region is highly conserved in higher mammals, including primates, similarly to what has been already shown for the N-terminal tail of pVHL30. Finally, we show that overexpression of pVHL30 and MDM2 together reduces cell metabolic activity and necrosis, suggesting a synergistic effect of these E3 ubiquitin ligases. Collectively, our data show an isoform-specific interaction of pVHL with MDM2, suggesting an interplay between these two E3 ubiquitin ligases.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Animais , Simulação por Computador , Células HEK293 , Humanos , Imunoprecipitação , Camundongos , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido
11.
Cell Physiol Biochem ; 50(5): 1840-1855, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30423558

RESUMO

BACKGROUND/AIMS: The permeability transition pore (PTP) is an unselective, Ca2+-dependent high conductance channel of the inner mitochondrial membrane whose molecular identity has long remained a mystery. The most recent hypothesis is that pore formation involves the F-ATP synthase, which consistently generates Ca2+-activated channels. Available structures do not display obvious features that can accommodate a channel; thus, how the pore can form and whether its activity can be entirely assigned to F-ATP synthase is the matter of debate. In this study, we investigated the role of F-ATP synthase subunits e, g and b in PTP formation. METHODS: Yeast null mutants for e, g and the first transmembrane (TM) α-helix of subunit b were generated and evaluated for mitochondrial morphology (electron microscopy), membrane potential (Rhodamine123 fluorescence) and respiration (Clark electrode). Homoplasmic C23S mutant of subunit a was generated by in vitro mutagenesis followed by biolistic transformation. F-ATP synthase assembly was evaluated by BN-PAGE analysis. Cu2+ treatment was used to induce the formation of F-ATP synthase dimers in the absence of e and g subunits. The electrophysiological properties of F-ATP synthase were assessed in planar lipid bilayers. RESULTS: Null mutants for the subunits e and g display dimer formation upon Cu2+ treatment and show PTP-dependent mitochondrial Ca2+ release but not swelling. Cu2+ treatment causes formation of disulfide bridges between Cys23 of subunits a that stabilize dimers in absence of e and g subunits and favors the open state of wild-type F-ATP synthase channels. Absence of e and g subunits decreases conductance of the F-ATP synthase channel about tenfold. Ablation of the first TM of subunit b, which creates a distinct lateral domain with e and g, further affected channel activity. CONCLUSION: F-ATP synthase e, g and b subunits create a domain within the membrane that is critical for the generation of the high-conductance channel, thus is a prime candidate for PTP formation. Subunits e and g are only present in eukaryotes and may have evolved to confer this novel function to F-ATP synthase.


Assuntos
Mitocôndrias/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cálcio/metabolismo , Microscopia Crioeletrônica , Dimerização , Potencial da Membrana Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/genética , Mutagênese Sítio-Dirigida , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
12.
J Biol Chem ; 293(38): 14632-14645, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30093404

RESUMO

Modification with arginine-specific glyoxals modulates the permeability transition (PT) of rat liver mitochondria, with inhibitory or inducing effects that depend on the net charge of the adduct(s). Here, we show that phenylglyoxal (PGO) affects the PT in a species-specific manner (inhibition in mouse and yeast, induction in human and Drosophila mitochondria). Following the hypotheses (i) that the effects are mediated by conserved arginine(s) and (ii) that the PT is mediated by the F-ATP synthase, we have narrowed the search to 60 arginines. Most of these residues are located in subunits α, ß, γ, ϵ, a, and c and were excluded because PGO modification did not significantly affect enzyme catalysis. On the other hand, yeast mitochondria lacking subunit g or bearing a subunit g R107A mutation were totally resistant to PT inhibition by PGO. Thus, the effect of PGO on the PT is specifically mediated by Arg-107, the only subunit g arginine that has been conserved across species. These findings are evidence that the PT is mediated by F-ATP synthase.


Assuntos
Arginina/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fenilglioxal/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Cálcio/metabolismo , Catálise , Dimerização , Drosophila , Células HEK293 , Humanos , Camundongos , Mitocôndrias/enzimologia , Poro de Transição de Permeabilidade Mitocondrial , ATPases Mitocondriais Próton-Translocadoras/química , Especificidade da Espécie
13.
Biochim Biophys Acta Bioenerg ; 1859(4): 244-252, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29355485

RESUMO

Cytochrome c oxidase (COX), complex IV of the mitochondrial respiratory chain, is comprised of 14 structural subunits, several prosthetic groups and metal cofactors, among which copper. Its biosynthesis involves a number of ancillary proteins, encoded by the COX-assembly genes that are required for the stabilization and membrane insertion of the nascent polypeptides, the synthesis of the prosthetic groups, and the delivery of the metal cofactors, in particular of copper. Recently, a modular model for COX assembly has been proposed, based on the sequential incorporation of different assembly modules formed by specific subunits. We have cloned and characterized the human homologue of yeast COX16. We show that human COX16 encodes a small mitochondrial transmembrane protein that faces the intermembrane space and is highly expressed in skeletal and cardiac muscle. Its knockdown in C. elegans produces COX deficiency, and its ablation in HEK293 cells impairs COX assembly. Interestingly, COX16 knockout cells retain significant COX activity, suggesting that the function of COX16 is partially redundant. Analysis of steady-state levels of COX subunits and of assembly intermediates by Blue-Native gels shows a pattern similar to that reported in cells lacking COX18, suggesting that COX16 is required for the formation of the COX2 subassembly module. Moreover, COX16 co-immunoprecipitates with COX2. Finally, we found that copper supplementation increases COX activity and restores normal steady state levels of COX subunits in COX16 knockout cells, indicating that, even in the absence of a canonical copper binding motif, COX16 could be involved in copper delivery to COX2.


Assuntos
Caenorhabditis elegans/enzimologia , Coenzimas/metabolismo , Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Cátions Bivalentes , Clonagem Molecular , Transporte de Elétrons/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Expressão Gênica , Técnicas de Inativação de Genes , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Transporte de Íons , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Músculo Esquelético/enzimologia , Miocárdio/enzimologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
14.
Hum Mutat ; 39(3): 406-414, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29194833

RESUMO

Mutations in COQ8B cause steroid-resistant nephrotic syndrome with variable neurological involvement. In yeast, COQ8 encodes a protein required for coenzyme Q (CoQ) biosynthesis, whose precise role is not clear. Humans harbor two paralog genes: COQ8A and COQ8B (previously termed ADCK3 and ADCK4). We have found that COQ8B is a mitochondrial matrix protein peripherally associated with the inner membrane. COQ8B can complement a ΔCOQ8 yeast strain when its mitochondrial targeting sequence (MTS) is replaced by a yeast MTS. This model was employed to validate COQ8B mutations, and to establish genotype-phenotype correlations. All mutations affected respiratory growth, but there was no correlation between mutation type and the severity of the phenotype. In fact, contrary to the case of COQ2, where residual CoQ biosynthesis correlates with clinical severity, patients harboring hypomorphic COQ8B alleles did not display a different phenotype compared with those with null mutations. These data also suggest that the system is redundant, and that other proteins (probably COQ8A) may partially compensate for the absence of COQ8B. Finally, a COQ8B polymorphism, present in 50% of the European population (NM_024876.3:c.521A > G, p.His174Arg), affects stability of the protein and could represent a risk factor for secondary CoQ deficiencies or for other complex traits.


Assuntos
Resistência a Medicamentos/genética , Mutação/genética , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/genética , Proteínas Quinases/genética , Esteroides/uso terapêutico , Adolescente , Adulto , Criança , Pré-Escolar , Estabilidade Enzimática , Teste de Complementação Genética , Humanos , Lactente , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Polimorfismo Genético , Saccharomyces cerevisiae/metabolismo , Adulto Jovem
15.
Sci Rep ; 7: 46562, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425505

RESUMO

Germline inactivation of the von Hippel-Lindau (VHL) tumor suppressor predisposes patients to develop different highly vascularized cancers. pVHL targets the hypoxia-inducible transcription factor (HIF-1α) for degradation, modulating the activation of various genes involved in hypoxia response. Hypoxia plays a relevant role in regulating cell cycle progression, inducing growth arrest in cells exposed to prolonged oxygen deprivation. However, the exact molecular details driving this transition are far from understood. Here, we present novel interactions between pVHL and the cyclin-dependent kinase inhibitor family CDKN1 (p21, p27 and p57). Bioinformatics analysis, yeast two-hybrid screening and co-immunoprecipitation assays were used to predict, dissect and validate the interactions. We found that the CDKN1 proteins share a conserved region mimicking the HIF-1α motif responsible for pVHL binding. Intriguingly, a p27 site-specific mutation associated to cancer is shown to modulate this novel interaction. Our findings suggest a new connection between the pathways regulating hypoxia and cell cycle progression.


Assuntos
Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Genes Supressores de Tumor , Mapas de Interação de Proteínas , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Sequência de Aminoácidos , Ciclo Celular/genética , Hipóxia Celular , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido , Proteína Supressora de Tumor Von Hippel-Lindau/genética
16.
Eur J Hum Genet ; 25(5): 646-650, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28198391

RESUMO

Meier-Gorlin syndrome (MGORS) is a rare disorder characterized by primordial dwarfism, microtia, and patellar aplasia/hypoplasia. Recessive mutations in ORC1, ORC4, ORC6, CDT1, CDC6, and CDC45, encoding members of the pre-replication (pre-RC) and pre-initiation (pre-IC) complexes, and heterozygous mutations in GMNN, a regulator of cell-cycle progression and DNA replication, have already been associated with this condition. We performed whole-exome sequencing (WES) in a patient with a clinical diagnosis of MGORS and identified biallelic variants in MCM5. This gene encodes a subunit of the replicative helicase complex, which represents a component of the pre-RC. Both variants, a missense substitution within a conserved domain critical for the helicase activity, and a single base deletion causing a frameshift and a premature stop codon, were predicted to be detrimental for the MCM5 function. Although variants of MCM5 have never been reported in specific human diseases, defect of this gene in zebrafish causes a phenotype of growth restriction overlapping the one associated with orc1 depletion. Complementation experiments in yeast showed that the plasmid carrying the missense variant was unable to rescue the lethal phenotype caused by mcm5 deletion. Moreover cell-cycle progression was delayed in patient's cells, as already shown for mutations in the ORC1 gene. Altogether our findings support the role of MCM5 as a novel gene involved in MGORS, further emphasizing that this condition is caused by impaired DNA replication.


Assuntos
Proteínas de Ciclo Celular/genética , Microtia Congênita/genética , Transtornos do Crescimento/genética , Micrognatismo/genética , Patela/anormalidades , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Criança , Códon sem Sentido , Microtia Congênita/diagnóstico , Replicação do DNA , Exoma , Teste de Complementação Genética , Transtornos do Crescimento/diagnóstico , Humanos , Mutação INDEL , Masculino , Micrognatismo/diagnóstico , Mutação de Sentido Incorreto , Saccharomyces cerevisiae/genética
17.
J Biol Chem ; 289(23): 15980-5, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24790105

RESUMO

Purified F-ATP synthase dimers of yeast mitochondria display Ca(2+)-dependent channel activity with properties resembling those of the permeability transition pore (PTP) of mammals. After treatment with the Ca(2+) ionophore ETH129, which allows electrophoretic Ca(2+) uptake, isolated yeast mitochondria undergo inner membrane permeabilization due to PTP opening. Yeast mutant strains ΔTIM11 and ΔATP20 (lacking the e and g F-ATP synthase subunits, respectively, which are necessary for dimer formation) display a striking resistance to PTP opening. These results show that the yeast PTP originates from F-ATP synthase and indicate that dimerization is required for pore formation in situ.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/fisiologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Saccharomyces cerevisiae/enzimologia , Western Blotting , Dimerização , Eletroforese em Gel de Poliacrilamida , Proteínas de Transporte da Membrana Mitocondrial/química , Poro de Transição de Permeabilidade Mitocondrial
18.
J Inherit Metab Dis ; 36(1): 43-53, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22569581

RESUMO

Recessive mutations in the mitochondrial arginyl-transfer RNA synthetase (RARS2) gene have been associated with early onset encephalopathy with signs of oxidative phosphorylation defects classified as pontocerebellar hypoplasia 6. We describe clinical, neuroimaging and molecular features on five patients from three unrelated families who displayed mutations in RARS2. All patients rapidly developed a neonatal or early-infantile epileptic encephalopathy with intractable seizures. The long-term follow-up revealed a virtual absence of psychomotor development, progressive microcephaly, and feeding difficulties. Mitochondrial respiratory chain enzymes in muscle and fibroblasts were normal in two. Blood and CSF lactate was abnormally elevated in all five patients at early stages while appearing only occasionally abnormal with the progression of the disease. Cerebellar vermis hypoplasia with normal aspect of the cerebral and cerebellar hemispheres appeared within the first months of life at brain MRI. In three patients follow-up neuroimaging revealed a progressive pontocerebellar and cerebral cortical atrophy. Molecular investigations of RARS2 disclosed the c.25A>G/p.I9V and the c.1586+3A>T in family A, the c.734G>A/p.R245Q and the c.1406G>A/p.R469H in family B, and the c.721T>A/p.W241R and c.35A>G/p.Q12R in family C. Functional complementation studies in Saccharomyces cerevisiae showed that mutation MSR1-R531H (equivalent to human p.R469H) abolished respiration whereas the MSR1-R306Q strain (corresponding to p.R245Q) displayed a reduced growth on non-fermentable YPG medium. Although mutations functionally disrupted yeast we found a relatively well preserved arginine aminoacylation of mitochondrial tRNA. Clinical and neuroimaging findings are important clues to raise suspicion and to reach diagnostic accuracy for RARS2 mutations considering that biochemical abnormalities may be absent in muscle biopsy.


Assuntos
Arginina-tRNA Ligase/genética , Mutação , Atrofias Olivopontocerebelares/enzimologia , Atrofias Olivopontocerebelares/genética , Cerebelo/enzimologia , Cerebelo/patologia , Cerebelo/fisiologia , Pré-Escolar , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/sangue , Deficiência Intelectual/líquido cefalorraquidiano , Deficiência Intelectual/genética , Ácido Láctico/sangue , Ácido Láctico/líquido cefalorraquidiano , Síndrome de Lennox-Gastaut , Imageamento por Ressonância Magnética/métodos , Masculino , Microcefalia/sangue , Microcefalia/líquido cefalorraquidiano , Microcefalia/genética , Mitocôndrias/genética , Neuroimagem/métodos , Atrofias Olivopontocerebelares/diagnóstico , Atrofias Olivopontocerebelares/metabolismo , Transtornos Psicomotores/genética , Convulsões/sangue , Convulsões/líquido cefalorraquidiano , Convulsões/genética , Espasmos Infantis/sangue , Espasmos Infantis/líquido cefalorraquidiano , Espasmos Infantis/genética
19.
Hum Mutat ; 34(1): 229-36, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23076989

RESUMO

We studied eight kindreds with gyrate atrophy of choroid and retina (GA), a rare autosomal recessive disorder caused by mutations of the OAT gene, encoding the homoexameric enzyme ornithine-delta-aminotransferase. We identified four novel and five previously reported mutations. Missense alleles were expressed in yeast strain carrying a deletion of the orthologous of human OAT. All mutations markedly reduced enzymatic activity. However, the effect on the yeast growth was variable, suggesting that some mutations retain residual activity, below the threshold of the enzymatic assay. Mutant proteins were either highly unstable and rapidly degraded, or failed to assemble to form the active OAT hexamer. Where possible, fibroblast analysis confirmed these data. We found no correlation between the residual enzymatic activity and the age of onset, or the severity of symptoms. Moreover, the response to B6 was apparently not related to the specific mutations carried by patients. Overall these data suggest that other factors besides the specific OAT genotype modulate (GA) phenotype in patients. Finally, we found that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), an AMPK activator known to increase mitochondrial biogenesis, markedly stimulates OAT expression, thus representing a possible treatment for a subset of GA patients with hypomorphic alleles.


Assuntos
Predisposição Genética para Doença/genética , Atrofia Girata/genética , Mutação de Sentido Incorreto , Ornitina-Oxo-Ácido Transaminase/genética , Sequência de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Células Cultivadas , Análise Mutacional de DNA , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Teste de Complementação Genética , Genótipo , Atrofia Girata/enzimologia , Atrofia Girata/patologia , Células HEK293 , Humanos , Immunoblotting , Modelos Moleculares , Dados de Sequência Molecular , Ornitina-Oxo-Ácido Transaminase/química , Ornitina-Oxo-Ácido Transaminase/metabolismo , Fenótipo , Estrutura Terciária de Proteína , Ribonucleotídeos/farmacologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos
20.
J Med Genet ; 49(3): 187-91, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22368301

RESUMO

BACKGROUND: COQ4 encodes a protein that organises the multienzyme complex for the synthesis of coenzyme Q(10) (CoQ(10)). A 3.9 Mb deletion of chromosome 9q34.13 was identified in a 3-year-old boy with mental retardation, encephalomyopathy and dysmorphic features. Because the deletion encompassed COQ4, the patient was screened for CoQ(10) deficiency. METHODS: A complete molecular and biochemical characterisation of the patient's fibroblasts and of a yeast model were performed. RESULTS: The study found reduced COQ4 expression (48% of controls), CoQ(10) content and biosynthetic rate (44% and 43% of controls), and activities of respiratory chain complex II+III. Cells displayed a growth defect that was corrected by the addition of CoQ(10) to the culture medium. Knockdown of COQ4 in HeLa cells also resulted in a reduction of CoQ(10.) Diploid yeast haploinsufficient for COQ4 displayed similar CoQ deficiency. Haploinsufficency of other genes involved in CoQ(10) biosynthesis does not cause CoQ deficiency, underscoring the critical role of COQ4. Oral CoQ(10) supplementation resulted in a significant improvement of neuromuscular symptoms, which reappeared after supplementation was temporarily discontinued. CONCLUSION: Mutations of COQ4 should be searched for in patients with CoQ(10) deficiency and encephalomyopathy; patients with genomic rearrangements involving COQ4 should be screened for CoQ(10) deficiency, as they could benefit from supplementation.


Assuntos
Anormalidades Múltiplas/genética , Haploinsuficiência , Proteínas Mitocondriais/genética , Ubiquinona/análogos & derivados , Anormalidades Múltiplas/tratamento farmacológico , Anormalidades Múltiplas/enzimologia , Proliferação de Células/efeitos dos fármacos , Pré-Escolar , Hibridização Genômica Comparativa , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Masculino , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transcrição Gênica , Ubiquinona/deficiência , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...