Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Imaging Biol ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038860

RESUMO

PURPOSE: Bioprinting is an additive manufacturing technology analogous to 3D printing. Instead of plastic or resin, cell-laden hydrogels are used to produce a construct of the intended biological structure. Over time, cells transform this construct into a functioning tissue or organ. The process of printing followed by tissue maturation is referred to as 4D bioprinting. The fourth dimension is temporal. Failure to provide living cells with sufficient amounts of oxygen at any point along the developmental timeline may jeopardize the bioprinting goals. Even transient hypoxia may alter cells' differentiation and proliferation or trigger apoptosis. Electron paramagnetic resonance (EPR) imaging modality is proposed to permit 4D monitoring of oxygen within bioprinted structures. PROCEDURES: Lithium octa-n-butoxy-phthalocyanine (LiNc-BuO) probes have been introduced into gelatin methacrylate (GelMA) bioink. GelMA is a cross-linkable hydrogel, and LiNc-BuO is an oxygen-sensitive compound that permits longitudinal oximetric measurements. The effects of the oxygen probe on printability have been evaluated. A digital light processing (DLP) bioprinter was built in the laboratory. Bioprinting protocols have been developed that consider the optical properties of the GelMA/LiNc-BuO composites. Acellular and cell-laden constructs have been printed and imaged. The post-printing effect of residual photoinitiator on oxygen depletion has been investigated. RESULTS: Models have been successfully printed using a lab-built bioprinter. Rapid scan EPR images reflective of the expected oxygen concentration levels have been acquired. An unreported problem of oxygen depletion in bioprinted constructs by the residual photoinitiator has been documented. EPR imaging is proposed as a control method for its removal. The oxygen consumption rates by HEK293T cells within a bioprinted cylinder have been imaged and quantified. CONCLUSIONS: The feasibility of the cointegration of 4D EPR imaging and 4D bioprinting has been demonstrated. The proof-of-concept experiments, which were conducted using oxygen probes loaded into GelMA, lay the foundation for a broad range of applications, such as bioprinting with many types of bioinks loaded with diverse varieties of molecular spin probes.

2.
Eur J Med Chem ; 260: 115765, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659194

RESUMO

Targeted Protein Modification (TPM) is an umbrella term encompassing numerous tools and approaches that use bifunctional agents to induce a desired modification over the POI. The most well-known TPM mechanism is PROTAC-directed protein ubiquitination. PROTAC-based targeted degradation offers several advantages over conventional small-molecule inhibitors, has shifted the drug discovery paradigm, and is acquiring increasing interest as over ten PROTACs have entered clinical trials in the past few years. Targeting the protein of interest for proteasomal degradation by PROTACS was the pioneer of various toolboxes for selective protein degradation. Nowadays, the ever-increasing number of tools and strategies for modulating and modifying the POI has expanded far beyond protein degradation, which phosphorylation and de-phosphorylation of the protein of interest, targeted acetylation, and selective modification of protein O-GlcNAcylation are among them. These novel strategies have opened new avenues for achieving more precise outcomes while remaining feasible and minimizing side effects. This field, however, is still in its infancy and has a long way to precede widespread use and translation into clinical practice. Herein, we investigate the pros and cons of these novel strategies by exploring the latest advancements in this field. Ultimately, we briefly discuss the emerging potential applications of these innovations in cancer therapy, neurodegeneration, viral infections, and autoimmune and inflammatory diseases.


Assuntos
Descoberta de Drogas , Processamento de Proteína Pós-Traducional , Proteólise , Fosforilação , Ubiquitinação , Quimera de Direcionamento de Proteólise
3.
Metab Brain Dis ; 35(6): 851-868, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32297170

RESUMO

Stroke is the leading cause of disability among adults as well as the 2nd leading cause of death globally. Ischemic stroke accounts for about 85% of strokes, and currently, tissue plasminogen activator (tPA), whose therapeutic window is limited to up to 4.5 h for the appropriate population, is the only FDA approved drug in practice and medicine. After a stroke, a cascade of pathophysiological events results in the opening of the blood-brain barrier (BBB) through which further complications, disabilities, and mortality are likely to threaten the patient's health. Strikingly, tPA administration in eligible patients might cause hemorrhagic transformation and sustained damage to BBB integrity. One must, therefore, delineate upon stroke onset which cellular and molecular factors mediate BBB permeability as well as what key roles BBB rupture plays in the pathophysiology of stroke. In this review article, given our past findings of mechanisms underlying BBB opening in stroke animal models, we elucidate cellular, subcellular, and molecular factors involved in BBB permeability after ischemic stroke. The contribution of each factor to stroke severity and outcome is further discussed. Determinant factors in BBB permeability and stroke include mitochondria, miRNAs, matrix metalloproteinases (MMPs), immune cells, cytokines, chemokines, and adhesion proteins. Once these factors are interrogated and their roles in the pathophysiology of stroke are determined, novel targets for drug discovery and development can be uncovered in addition to novel therapeutic avenues for human stroke management.


Assuntos
Barreira Hematoencefálica/metabolismo , Isquemia Encefálica/metabolismo , Permeabilidade Capilar/fisiologia , AVC Isquêmico/metabolismo , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/imunologia , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/imunologia , Humanos , AVC Isquêmico/diagnóstico por imagem , AVC Isquêmico/imunologia
4.
Int J Nanomedicine ; 15: 363-386, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021185

RESUMO

The advent of porous materials, in particular zeolitic nanoparticles, has opened up unprecedented putative research avenues in nanomedicine. Zeolites with intracrystal mesopores are low framework density aluminosilicates possessing a regular porous structure along with intricate channels. Their unique physiochemical as well as physiological parameters necessitate a comprehensive overview on their classifications, fabrication platforms, cellular/macromolecular interactions, and eventually their prospective biomedical applications through illustrating the challenges and opportunities in different integrative medical and pharmaceutical fields. More particularly, an update on recent advances in zeolite-accommodated drug delivery and the prevalent challenges regarding these molecular sieves is to be presented. In conclusion, strategies to accelerate the translation of these porous materials from bench to bedside along with common overlooked physiological and pharmacological factors of zeolite nanoparticles are discussed and debated. Furthermore, for zeolite nanoparticles, it is a matter of crucial importance, in terms of biosafety and nanotoxicology, to appreciate the zeolite-bio interface once the zeolite nanoparticles are exposed to the bio-macromolecules in biological media. We specifically shed light on interactions of zeolite nanoparticles with fibrinogen and amyloid beta which had been comprehensively investigated in our recent reports. Given the significance of zeolite nanoparticles' interactions with serum or interstitial proteins conferring them new biological identity, the preliminary approaches for deeper understanding of administration, distribution, metabolism and excretion of zeolite nanoparticles are elucidated.


Assuntos
Nanomedicina/métodos , Nanopartículas/química , Nanopartículas/uso terapêutico , Zeolitas/química , Peptídeos beta-Amiloides/metabolismo , Animais , Meios de Contraste/química , Sistemas de Liberação de Medicamentos/métodos , Fibrinogênio/metabolismo , Gastroenteropatias/terapia , Humanos , Hidrogéis/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas/toxicidade , Osteogênese , Porosidade , Diálise Renal
5.
Nanomedicine ; 24: 102149, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31927133

RESUMO

Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which leads to progressive dysfunction of cognition, memory and learning in elderly people. Common therapeutic agents are not only inadequate to suppress the progression of AD pathogenesis but also produce deleterious side effects; hence, development of alternative therapies is required to specifically suppress complications of AD. The current review provides a commentary on conventional as well as novel therapeutic approaches with an emphasis on stem cell and nano-based therapies for improvement and management of AD pathogenesis. According to our overview of the current literature, AD is a multi-factorial disorder with various pathogenic trajectories; hence, a multifunctional strategy to create effective neuroprotective agents is required to treat this disorder.


Assuntos
Doença de Alzheimer/patologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Doenças Neurodegenerativas/patologia , Doença de Alzheimer/terapia , Animais , Humanos , Doenças Neurodegenerativas/terapia
6.
J Biomol Struct Dyn ; 38(16): 4710-4717, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31684811

RESUMO

Based on the accumulative evidences during recent decades, miRNAs have been found overexpressed in several human cancer types and also in Down syndrome patients, contributing to the neuropathology of Down syndrome. From this point of view, investigations on the structure and dynamic mechanisms related to the Argonaute 2 miRNAs binding in which silencing of the mRNA occurs, have inspired many clinical researchers to target this complex to inhibit the silencing process. In the current research, we have virtually screened the OTAVA_CNS_library to introduce new inhibitor compounds for the Ago2/miRNA complex. Ten hit compounds were obtained, with just one of them nominated as the best compound. Following the interaction analysis, by utilizing molecular dynamics (MD) simulations, effects of two mutations (Thr526 to isoleucine and Gln545 to alanine) on the dynamic properties of Ago2 in the complex with the best inhibitor compound were investigated. RMSD, RMSF and h-bond number beside other analyses, highlighted the importance of the Thr526 and Gln545 mutations for the stability and flexibility of the (Ago2)/ligand complex.[Formula: see text]Communicated by Ramaswamy H. Sarma.


Assuntos
MicroRNAs , Humanos , Ligantes , MicroRNAs/genética , Simulação de Dinâmica Molecular , Mutação , RNA Mensageiro
7.
ACS Chem Neurosci ; 9(7): 1725-1734, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29676567

RESUMO

Amyloid beta (Aß), which forms toxic oligomers and fibrils in brain tissues of patients with Alzheimer's disease, is broadly used as a model protein to probe the effect of nanoparticles (NPs) on oligomerization and fibrillation processes. However, the majority of the reports in the field have ignored the effect of the biomolecular corona on the fibrillogenesis of the Aß proteins. The biomolecular corona, which is a layer composed of various types of biomolecules that covers the surface of NPs upon their interaction with biological fluids, determines the biological fates of NPs. Therefore, during in vivo interaction of NPs with Aß protein, what the Aß actually "sees" is the human plasma and/or cerebrospinal fluid (CSF) biomolecular-coated NPs rather than the pristine surface of NPs. Here, to mimic the in vivo effects of therapeutic NPs as antifibrillation agents, we probed the effects of a biomolecular corona derived from human CSF and/or plasma on Aß fibrillation. The results demonstrated that the type of biomolecular corona can dictate the inhibitory or acceleratory effect of NPs on Aß1-42 and Aß25-35 fibrillation processes. More specifically, we found that the plasma biomolecular-corona-coated gold NPs, with sphere and rod shapes, has less inhibitory effect on Aß1-42 fibrillation kinetics compared with CSF biomolecular-corona-coated and pristine NPs. Opposite results were obtained for Aß25-35 peptide, where the pristine NPs accelerated the Aß25-35 fibrillation process, whereas corona-coated ones demonstrated an inhibitory effect. In addition, the CSF biomolecular corona had less inhibitory effect than those obtained from plasma.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Nanopartículas/química , Fragmentos de Peptídeos/metabolismo , Multimerização Proteica , Peptídeos beta-Amiloides/química , Animais , Compostos de Ouro/química , Humanos , Cinética , Fragmentos de Peptídeos/química , Agregação Patológica de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...