Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 262: 110318, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32250801

RESUMO

Groundwater with an excessive level of Arsenic (As) is a threat to human health. In Bangladesh, out of 64 districts, the groundwater of 50 and 59 districts contains As exceeding the Bangladesh (50 µg/L) and WHO (10 µg/L) standards for potable water. This review focuses on the occurrence, origin, plausible sources, and mobilization mechanisms of As in the groundwater of Bangladesh to better understand its environmental as well as public health consequences. High As concentrations mainly was mainly occur from the natural origin of the Himalayan orogenic tract. Consequently, sedimentary processes transport the As-loaded sediments from the orogenic tract to the marginal foreland of Bangladesh, and under the favorable biogeochemical circumstances, As is discharged from the sediment to the groundwater. Rock weathering, regular floods, volcanic movement, deposition of hydrochemical ore, and leaching of geological formations in the Himalayan range cause As occurrence in the groundwater of Bangladesh. Redox and desorption processes along with microbe-related reduction are the key geochemical processes for As enrichment. Under reducing conditions, both reductive dissolution of Fe-oxides and desorption of As are the root causes of As mobilization. A medium alkaline and reductive environment, resulting from biochemical reactions, is the major factor mobilizing As in groundwater. An elevated pH value along with decoupling of As and HCO3- plays a vital role in mobilizing As. The As mobilization process is related to the reductive solution of metal oxides as well as hydroxides that exists in sporadic sediments in Bangladesh. Other mechanisms, such as pyrite oxidation, redox cycling, and competitive ion exchange processes, are also postulated as probable mechanisms of As mobilization. The reductive dissolution of MnOOH adds dissolved As and redox-sensitive components such as SO42- and oxidized pyrite, which act as the major mechanisms to mobilize As. The reductive suspension of Mn(IV)-oxyhydroxides has also accelerated the As mobilization process in the groundwater of Bangladesh. Infiltration from the irrigation return flow and surface-wash water are also potential factors to remobilize As. Over-exploitation of groundwater and the competitive ion exchange process are also responsible for releasing As into the aquifers of Bangladesh.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Bangladesh , Monitoramento Ambiental , Sedimentos Geológicos , Humanos
2.
Pathogens ; 9(3)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183055

RESUMO

Gray mold disease caused by Botrytis cinerea is a devastating disease that leads to serious financial loss. In this study, the entomopathogenic fungus Metarhizium anisopliae that acts against the gray mold pathogen B. cinerea was evaluated. M. anisopliae produced a significant inhibition zone in front of the B. cinerea colony in the dual culture test. In addition, volatile organic compounds generated by M. anisopliae were shown to have an inhibitory effect on B. cinerea mycelia growth and reduced 41% of gray mold severity of postharvest tomatoes. The 10% concentration of the culture filtrate of M. anisopliae inhibited 88.62% of colony radial growth as well as 63.85% of sclerotia germination and all conidia germination of B. cinerea. Furthermore, the culture filtrate of M. anisopliae retained its inhibitory effect against the radial growth of B. cinerea even after heating for 15 min at 100 °C. Feasible mechanisms of M. anisopliae involved in the control of B. cinerea were explored, and it was demonstrated that the plasma membrane of B. cinerea conidia was damaged by the product of metabolism of M. anisopliae. In addition, after treating with culture filtrate of M. anisopliae, the B. cinerea phenotype was shown to be abnormal, and cell organelles of B. cinerea mycelia were damaged significantly. A significant control efficacy of M. anisopliae against tomato gray mold was detected on both the detached leaf assay (84.24%) as well as the whole plant (72.38%). In addition, a 78% reduction in tomato fruit mold was detected at a 10% treated concentration of M. anisopliae. These findings suggest that M. anisopliae possesses potential as a biocontrol agent against tomato gray mold in the greenhouse and during the postharvest stage.

3.
J Environ Manage ; 242: 199-209, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31039529

RESUMO

Drinking water with excessive concentration levels of arsenic (As) is a great threat to human health. A hydrochemical approach was employed in 50 drinking water samples (collected from Kushtia district, Bangladesh) to examine the occurrence of geogenic As and the presence of trace metals (TMs), as well as the factors controlling As release in aquifers. The results reveal that the drinking water of shallow aquifers is highly contaminated by As (6.05-590.7 µg/L); 82% of samples were found to exceed the WHO recommended limit (10 µg/L) for potable water, but the concentrations of Si, B, Mn, Sr, Se, Ba, Fe, Cd, Pb, F, U, Ni, Li, and Cr were within safe limits. The Ca-HCO3-type drinking water was identified as having high contents of As, pH and HCO3-, a medium-high content EC, and low concentrations of NO3-, SO42-, K+, and Cl-. The significant correlation between As and NO3- indicates that NO3- might be attributed to the use of phosphate fertilizers and a factor responsible for enhancing As in aquifers. The study also reports that the occurrence of high As and the presence of TMs in drinking water may be a result of local anthropogenic activities, such as irrigation, intensive land use and the application of agrochemicals. The insignificant correlation between As and SO42- demonstrated that As is released from SO42- minerals under reducing conditions. An elevated pH value along with decoupling of As and HCO3- plays a vital role in mobilizing As to aquifer systems. Moreover, the positive relationship between As and Si indicated that As is transported in the biogeochemical environment. The reductive suspension of Mn(IV)-oxyhydroxides also accelerated the As mobilization process. Over exploitation of tube-well water and the competitive ion exchange process are also responsible for the release of As in aquifers.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Bangladesh , Monitoramento Ambiental , Humanos , Metais
4.
Environ Sci Pollut Res Int ; 25(16): 15830-15843, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29582329

RESUMO

A prompt growth in research on arsenic occurrence and behavior in the environment has occurred over the last decade or so. High arsenic (As) in groundwater has become a major global concern due to its widespread occurrence. A comparative hydrogeochemical study was performed on the occurrence of high As groundwater in Datong Basin, China, and Kushtia District, Bangladesh. A total of 132 groundwater samples (83 from Datong Basin and 49 from Kushtia District) were collected to analyze the major hydrogeochemical components and trace elements in groundwater of both areas. Factor analysis (FA) was applied on the hydrochemical data to identify the major hydrogeochemical processes in sedimentary aquifers. High As groundwater was observed in the low-lying central parts of Datong Basin, which are composed of the Holocene alluvial and lacustrine aquifers. The elevated As concentrations ranged from 0.31 to 452 µg/L and distributed in depths between 20 and 45 m. As-enriched groundwater is mainly Na-HCO3 type water and characterized by higher pH value, high Na+, low Ca2+, SO42-, and NO3- along with moderate TDS. The alkaline and reducing subsurface environment facilitate the leaching of As in sedimentary aquifers. The release and distribution of As in aquifers are resulted from the reduction of As-carrying crystalline iron (Fe) oxide/hydroxides and oxidation of organic matter. The aquifers of Kushtia District, Bangladesh, are unconsolidated, alluvial in nature, and developed from Holocene floodplain and Pleistocene deposits. High As (6.04-590.7 µg/L) groundwater occurs mainly in shallow aquifers. The Ca-HCO3 type groundwater is distinguished by circum-neutral pH, medium-high EC, high HCO3-, and low content of NO3-, SO42-, K+, and Cl-. The reductive suspension of MnOOH increases the dissolved As loads and redox responsive elements such as SO42- and pyrite oxidation act as the main mechanisms for As release in groundwater. As is mobilized by anaerobic leakage from the brown-clay and gray-sand into the sediment. Infiltration from irrigation return and surface wash water are the potential factors that remobilize As. The weak loading of Fe suggests that the release of Fe and As is decoupled in sedimentary aquifers of Kushtia District.


Assuntos
Arsênio/análise , Monitoramento Ambiental , Sedimentos Geológicos/análise , Água Subterrânea/análise , Poluentes Químicos da Água/análise , Bangladesh , China , Sedimentos Geológicos/química , Água Subterrânea/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...