Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0303094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38768222

RESUMO

In response to the growing number of diabetes cases worldwide, Our study addresses the escalating issue of diabetic eye disease (DED), a significant contributor to vision loss globally, through a pioneering approach. We propose a novel integration of a Genetic Grey Wolf Optimization (G-GWO) algorithm with a Fully Convolutional Encoder-Decoder Network (FCEDN), further enhanced by a Kernel Extreme Learning Machine (KELM) for refined image segmentation and disease classification. This innovative combination leverages the genetic algorithm and grey wolf optimization to boost the FCEDN's efficiency, enabling precise detection of DED stages and differentiation among disease types. Tested across diverse datasets, including IDRiD, DR-HAGIS, and ODIR, our model showcased superior performance, achieving classification accuracies between 98.5% to 98.8%, surpassing existing methods. This advancement sets a new standard in DED detection and offers significant potential for automating fundus image analysis, reducing reliance on manual examination, and improving patient care efficiency. Our findings are crucial to enhancing diagnostic accuracy and patient outcomes in DED management.


Assuntos
Algoritmos , Retinopatia Diabética , Aprendizado de Máquina , Humanos , Retinopatia Diabética/genética , Retinopatia Diabética/diagnóstico , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
2.
Heliyon ; 9(4): e15407, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37123955

RESUMO

Computer science graduates face a massive gap between industry-relevant skills and those learned at school. Industry practitioners often counter a huge challenge when moving from academics to industry, requiring a completely different set of skills and knowledge. It is essential to fill the gap between the industry's required skills and those taught at varsities. In this study, we leverage deep learning and big data to propose a framework that maps the required skills with those acquired by computing graduates. Based on the mapping, we recommend enhancing the computing curriculum to match the industry-relevant skills. Our proposed framework consists of four layers: data, embedding, mapping, and a curriculum enhancement layer. Based on the recommendations from the mapping module, we made revisions and modifications to the computing curricula. Finally, we perform a case study of the Norwegian IT jobs market, where we make recommendations for data science and software engineering-related jobs. We argue that by using our proposed methodology and analysis, a significant enhancement in the computing curriculum is possible to help increase employability, student satisfaction, and smart decision-making.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...