Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906944

RESUMO

Pyrones and their aromatic ring-fused derivatives have gained significant attention due to their diverse biological activities and potential as foundational frameworks for advanced materials. In this paper, we describe a proficient approach for the preparation of azuleno[1,2-c]pyran-1-ones, which are difficult to produce by using conventional methods. The synthesis was achieved through BroÌ·nsted acid-mediated cyclization of 2-azulenylalkynes. The structural and optical properties of azuleno[1,2-c]pyran-1-ones were characterized by single-crystal X-ray analysis, NMR, UV/vis, and fluorescence spectroscopies. Under acidic conditions, these compounds displayed notable spectral alterations and emission, distinct from their spectra in neutral medium. These results suggest that azuleno[1,2-c]pyran-1-ones hold great potential for applications in organic electronic materials and fluorescent pH sensors.

2.
Chempluschem ; 86(6): 946-966, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33973729

RESUMO

Azulene-substituted donor-acceptor polymethines, bi-, ter-, and quinqueazulenes composed of the 1,6'-biazulene unit have been successfully prepared from corresponding Zincke salts. The synthesis of polymethines through the reaction of Zincke salts with several amines, followed by a Knoevenagel reaction with malononitrile, was accomplished in moderate to high yields (40-92 %). Meanwhile, the reaction of Zincke salts with secondary amines and the subsequent sequential condensation-cyclization with cyclopentadienide ions, so-called Ziegler-Hafner method, produced the corresponding 1,6'-biazulenes, 1,6';3,6''-terazulenes, and quinqueazulene, respectively. The structural, optical, and electrochemical properties of the azulene-substituted donor-acceptor polymethines, bi-, ter-, and quinqueazulenes were revealed by single-crystal X-ray structure analysis, UV/vis spectroscopy, voltammetry analysis, spectroelectrochemistry, and theoretical calculations. These results suggested that the substituents on the azulene ring and their substitution positions directly affect their reactivities, optical and electrochemical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...