Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(1): e2300365, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37920068

RESUMO

Human liver organoids (HLOs) are reliable tools to represent physiological human liver biology. However, their use is limited especially in basic sciences. One of the reasons for this would be the insufficient systematic methodology to handle HLOs, including culture system, functional assessment, and gene transduction. Here, we generated and characterized mouse L cells stably and simultaneously overexpressing R-spondin1, hepatocyte growth factor, fibroblast growth factor (FGF) 7, and FGF10 via lentiviral transduction. The conditioned medium of the cells contributed to HLO growth as a replacement of commercially available recombinant proteins, which leads to a significant reduction of their culture cost. Proliferative and maturation phases of the cells were controlled by switching the medium to facilitate the evaluation of hepatocyte function, including insulin responsiveness and intracellular lipid accumulation. Gene expression analysis revealed that HLOs highly expressed genes involved in lipid metabolism. Importantly, HLOs secreted physiologically matured very low-density lipoprotein, which is rarely observed in mice and in established cell lines. Efficient gene transduction into HLOs was achieved via a transient 2-dimensional culture during viral infection. This study provides an invaluable platform for utilizing HLOs in various research fields, such as molecular biology, pharmacology, toxicology, and regenerative medicine.


Assuntos
Metabolismo dos Lipídeos , Fígado , Humanos , Camundongos , Animais , Metabolismo dos Lipídeos/genética , Técnicas de Cultura de Células/métodos , Hepatócitos/metabolismo , Organoides/metabolismo
2.
JACS Au ; 3(9): 2458-2466, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37772185

RESUMO

Molecular photoswitches are extensively used as molecular machines because of the small structures, simple motions, and advantages of light including high spatiotemporal resolution. Applications of photoswitches depend on the mechanical responses, in other words, whether they can generate motions against mechanical forces as actuators or can be activated and controlled by mechanical forces as mechanophores. Sterically hindered stiff stilbene (HSS) is a promising photoswitch offering large hinge-like motions in the E/Z isomerization, high thermal stability of the Z isomer, which is relatively unstable compared to the E isomer, with a half-life of ca. 1000 years at room temperature, and near-quantitative two-way photoisomerization. However, its mechanical response is entirely unexplored. Here, we elucidate the mechanochemical reactivity of HSS by incorporating one Z or E isomer into the center of polymer chains, ultrasonicating the polymer solutions, and stretching the polymer films to apply elongational forces to the embedded HSS. The present study demonstrated that HSS mechanically isomerizes only in the Z to E direction and reversibly isomerizes in combination with UV light, i.e., works as a photomechanical hinge. The photomechanically inducible but thermally irreversible hinge-like motions render HSS unique and promise unconventional applications differently from existing photoswitches, mechanophores, and hinges.

3.
J Org Chem ; 87(23): 15762-15770, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36378160

RESUMO

Molecular photoswitches have been widely used as molecular machines in various fields due to the small structures and simple motions generated in reversible isomerization. However, common photoswitches, as represented by azobenzene (AB), cannot combine both large motions and high thermal stability, which are critically important for some practical applications in addition to high photoisomerization yields. Here, we focus on a promising photoswitch, stiff stilbene (SS), and its derivative, sterically hindered SS (HSS). The detailed investigation of their performance with a comparison to AB demonstrated that HSS is an outstanding photoswitch offering larger motions than AB and SS, ca. 90% photoisomerization in both E-to-Z and Z-to-E directions, and significantly high thermal stability with a half-life of ca. 1000 years at room temperature. The superior performance of HSS promises its use in various applications, even where previous photoswitches have troubles and are unavailable.


Assuntos
Estilbenos , Compostos Azo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...