Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(27): 24418-24425, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37457489

RESUMO

Direct radioiodination of peptides using copper-mediated iododeboronation is a promising radiosynthetic method for solving issues of classical direct radiolabeling, such as toxicity of the organotin precursor (iododestannylation) or formation of radio byproducts (by electrophilic iodination of a tyrosine residue). However, the parameters for optimizing the reaction conditions for various peptides are not completely understood. In particular, considering peptide solubility, the effects of water-containing solvents on labeling efficiency should be thoroughly investigated. Herein, we describe the effect of water on copper-mediated radioiododeboronation and the key factors for ensuring the successful radiolabeling of small molecules and peptides in water-organic solvents. 125I-labeled substrates containing peptides ([125I]m/p-IBTA) were obtained with high radiochemical conversions (RCCs: >95%) using an alcohol solvent, and a decrease in these RCCs was observed with increasing water content in the methanol solvent. Additionally, when using water-methanol solvents, a difference in RCC due to the substituent effect was also observed. However, the RCCs can be improved without the use of other additives by adjusting the copper catalyst and time of the labeling reaction or by utilizing substituent effects. This study contributes to the improvement of the design of boronic peptide precursors and radiolabeling protocols using copper-mediated iododeboronation.

2.
ACS Omega ; 8(7): 7030-7035, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844571

RESUMO

Erythropoietin-producing hepatocellular receptor A2 (EphA2) is overexpressed in cancer cells and causes abnormal cell proliferation. Therefore, it has attracted attention as a target for diagnostic agents. In this study, the EphA2-230-1 monoclonal antibody (EphA2-230-1) was labeled with [111In]In and evaluated as an imaging tracer for single-photon emission computed tomography (SPECT) of EphA2. EphA2-230-1 was conjugated with 2-(4-isothiocyanatobenzyl)-diethylenetriaminepentaacetic acid (p-SCN-BnDTPA) and then labeled with [111In]In. [111In]In-BnDTPA-EphA2-230-1 was evaluated in cell-binding, biodistribution, and SPECT/computed tomography (CT) studies. The cellular uptake ratio of [111In]In-BnDTPA-EphA2-230-1 was 14.0 ± 2.1%/mg protein at 4 h in the cell-binding study. In the biodistribution study, a high uptake of [111In]In-BnDTPA-EphA2-230-1 was observed in tumor tissue (14.6 ± 3.2% injected dose/g at 72 h). The superior accumulation of [111In]In-BnDTPA-EphA2-230-1 in tumors was also confirmed using SPECT/CT. Therefore, [111In]In-BnDTPA-EphA2-230-1 has potential as a SPECT imaging tracer for EphA2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...