Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 630(8017): 744-751, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38867042

RESUMO

DNA base damage is a major source of oncogenic mutations1. Such damage can produce strand-phased mutation patterns and multiallelic variation through the process of lesion segregation2. Here we exploited these properties to reveal how strand-asymmetric processes, such as replication and transcription, shape DNA damage and repair. Despite distinct mechanisms of leading and lagging strand replication3,4, we observe identical fidelity and damage tolerance for both strands. For small alkylation adducts of DNA, our results support a model in which the same translesion polymerase is recruited on-the-fly to both replication strands, starkly contrasting the strand asymmetric tolerance of bulky UV-induced adducts5. The accumulation of multiple distinct mutations at the site of persistent lesions provides the means to quantify the relative efficiency of repair processes genome wide and at single-base resolution. At multiple scales, we show DNA damage-induced mutations are largely shaped by the influence of DNA accessibility on repair efficiency, rather than gradients of DNA damage. Finally, we reveal specific genomic conditions that can actively drive oncogenic mutagenesis by corrupting the fidelity of nucleotide excision repair. These results provide insight into how strand-asymmetric mechanisms underlie the formation, tolerance and repair of DNA damage, thereby shaping cancer genome evolution.


Assuntos
Dano ao DNA , Reparo do DNA , Replicação do DNA , Mutagênese , Mutação , Humanos , Animais , Adutos de DNA/metabolismo , Raios Ultravioleta , DNA/metabolismo , DNA/química , DNA/genética , Alquilação , DNA Polimerase Dirigida por DNA/metabolismo
2.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961445

RESUMO

Genome differential positioning within interphase nuclei remains poorly explored. We extended and validated TSA-seq to map genomic regions near nucleoli and pericentric heterochromatin in four human cell lines. Our study confirmed that smaller chromosomes localize closer to nucleoli but further deconvolved this by revealing a preference for chromosome arms below 36-46 Mbp in length. We identified two lamina associated domain subsets through their differential nuclear lamina versus nucleolar positioning in different cell lines which showed distinctive patterns of DNA replication timing and gene expression across all cell lines. Unexpectedly, active, nuclear speckle-associated genomic regions were found near typically repressive nuclear compartments, which is attributable to the close proximity of nuclear speckles and nucleoli in some cell types, and association of centromeres with nuclear speckles in hESCs. Our study points to a more complex and variable nuclear genome organization than suggested by current models, as revealed by our TSA-seq methodology.

3.
Wellcome Open Res ; 8: 158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37766844

RESUMO

Background: It has been known for many years that in metazoan cells, replication origins are organised into clusters where origins within each cluster fire near-synchronously. Despite clusters being a fundamental organising principle of metazoan DNA replication, the genomic location of origin clusters has not been documented. Methods: We synchronised human U2OS by thymidine block and release followed by L-mimosine block and release to create a population of cells progressing into S phase with a high degree of synchrony. At different times after release into S phase, cells were pulsed with EdU; the EdU-labelled DNA was then pulled down, sequenced and mapped onto the human genome. Results: The early replicating DNA showed features at a range of scales. Wavelet analysis showed that the major feature of the early replicating DNA was at a size of 500 kb, consistent with clusters of replication origins. Over the first two hours of S phase, these Replicon Cluster Domains broadened in width, consistent with their being enlarged by the progression of replication forks at their outer boundaries. The total replication signal associated with each Replicon Cluster Domain varied considerably, and this variation was reproducible and conserved over time. We provide evidence that this variability in replication signal was at least in part caused by Replicon Cluster Domains being activated at different times in different cells in the population. We also provide evidence that adjacent clusters had a statistical preference for being activated in sequence across a group, consistent with the 'domino' model of replication focus activation order observed by microscopy. Conclusions: We show that early replicating DNA is organised into Replicon Cluster Domains that behave as expected of replicon clusters observed by DNA fibre analysis. The coordinated activation of different Replicon Cluster Domains can generate the replication timing programme by which the genome is duplicated.

4.
bioRxiv ; 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38249518

RESUMO

Replication Timing (RT) refers to the temporal order in which the genome is replicated during S phase. Early replicating regions correlate with the transcriptionally active, accessible euchromatin (A) compartment, while late replicating regions correlate with the heterochromatin (B) compartment and repressive histone marks. Previously, widespread A/B genome compartmentalization changes were reported following Brd2 depletion. Since RT and A/B compartmentalization are two of the most highly correlated chromosome properties, we evaluated the effects of Brd2 depletion on RT. We performed E/L Repli-Seq following Brd2 depletion in the previously described Brd2 conditional degron cell line and found no significant alterations in RT after Brd2 KD. This finding prompted us to re-analyze the Micro-C data from the previous publication. We report that we were unable to detect any compartmentalization changes in Brd2 depleted cells compared to DMSO control using the same data. Taken together, our findings demonstrate that Brd2 depletion alone does not affect A/B compartmentalization or RT in mouse embryonic stem cells.

5.
Nature ; 606(7915): 812-819, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676475

RESUMO

DNA replication occurs through an intricately regulated series of molecular events and is fundamental for genome stability1,2. At present, it is unknown how the locations of replication origins are determined in the human genome. Here we dissect the role of topologically associating domains (TADs)3-6, subTADs7 and loops8 in the positioning of replication initiation zones (IZs). We stratify TADs and subTADs by the presence of corner-dots indicative of loops and the orientation of CTCF motifs. We find that high-efficiency, early replicating IZs localize to boundaries between adjacent corner-dot TADs anchored by high-density arrays of divergently and convergently oriented CTCF motifs. By contrast, low-efficiency IZs localize to weaker dotless boundaries. Following ablation of cohesin-mediated loop extrusion during G1, high-efficiency IZs become diffuse and delocalized at boundaries with complex CTCF motif orientations. Moreover, G1 knockdown of the cohesin unloading factor WAPL results in gained long-range loops and narrowed localization of IZs at the same boundaries. Finally, targeted deletion or insertion of specific boundaries causes local replication timing shifts consistent with IZ loss or gain, respectively. Our data support a model in which cohesin-mediated loop extrusion and stalling at a subset of genetically encoded TAD and subTAD boundaries is an essential determinant of the locations of replication origins in human S phase.


Assuntos
Proteínas de Ciclo Celular , Cromatina , Proteínas Cromossômicas não Histona , Origem de Replicação , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Humanos , Origem de Replicação/genética , Fase S , Coesinas
6.
Science ; 372(6540): 371-378, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33888635

RESUMO

The temporal order of DNA replication [replication timing (RT)] is correlated with chromatin modifications and three-dimensional genome architecture; however, causal links have not been established, largely because of an inability to manipulate the global RT program. We show that loss of RIF1 causes near-complete elimination of the RT program by increasing heterogeneity between individual cells. RT changes are coupled with widespread alterations in chromatin modifications and genome compartmentalization. Conditional depletion of RIF1 causes replication-dependent disruption of histone modifications and alterations in genome architecture. These effects were magnified with successive cycles of altered RT. These results support models in which the timing of chromatin replication and thus assembly plays a key role in maintaining the global epigenetic state.


Assuntos
Período de Replicação do DNA , Epigênese Genética , Epigenoma , Proteínas de Ligação a Telômeros/metabolismo , Linhagem Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Replicação do DNA , Expressão Gênica , Técnicas de Inativação de Genes , Genoma Humano , Heterocromatina/metabolismo , Código das Histonas , Histonas/metabolismo , Humanos , Proteínas de Ligação a Telômeros/genética
8.
Genome Biol ; 22(1): 36, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446254

RESUMO

We report SPIN, an integrative computational method to reveal genome-wide intranuclear chromosome positioning and nuclear compartmentalization relative to multiple nuclear structures, which are pivotal for modulating genome function. As a proof-of-principle, we use SPIN to integrate nuclear compartment mapping (TSA-seq and DamID) and chromatin interaction data (Hi-C) from K562 cells to identify 10 spatial compartmentalization states genome-wide relative to nuclear speckles, lamina, and putative associations with nucleoli. These SPIN states show novel patterns of genome spatial organization and their relation to other 3D genome features and genome function (transcription and replication timing). SPIN provides critical insights into nuclear spatial and functional compartmentalization.


Assuntos
Núcleo Celular/genética , Genoma Humano , Compartimento Celular , Cromatina , Mapeamento Cromossômico , Cromossomos , Replicação do DNA , Histonas , Humanos , Células K562 , Modelos Genéticos
9.
Nat Commun ; 11(1): 3696, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728046

RESUMO

ENCODE comprises thousands of functional genomics datasets, and the encyclopedia covers hundreds of cell types, providing a universal annotation for genome interpretation. However, for particular applications, it may be advantageous to use a customized annotation. Here, we develop such a custom annotation by leveraging advanced assays, such as eCLIP, Hi-C, and whole-genome STARR-seq on a number of data-rich ENCODE cell types. A key aspect of this annotation is comprehensive and experimentally derived networks of both transcription factors and RNA-binding proteins (TFs and RBPs). Cancer, a disease of system-wide dysregulation, is an ideal application for such a network-based annotation. Specifically, for cancer-associated cell types, we put regulators into hierarchies and measure their network change (rewiring) during oncogenesis. We also extensively survey TF-RBP crosstalk, highlighting how SUB1, a previously uncharacterized RBP, drives aberrant tumor expression and amplifies the effect of MYC, a well-known oncogenic TF. Furthermore, we show how our annotation allows us to place oncogenic transformations in the context of a broad cell space; here, many normal-to-tumor transitions move towards a stem-like state, while oncogene knockdowns show an opposing trend. Finally, we organize the resource into a coherent workflow to prioritize key elements and variants, in addition to regulators. We showcase the application of this prioritization to somatic burdening, cancer differential expression and GWAS. Targeted validations of the prioritized regulators, elements and variants using siRNA knockdowns, CRISPR-based editing, and luciferase assays demonstrate the value of the ENCODE resource.


Assuntos
Bases de Dados Genéticas , Genômica , Neoplasias/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Redes Reguladoras de Genes , Humanos , Mutação/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo
10.
Nat Commun ; 11(1): 3613, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32680994

RESUMO

Common fragile sites (CFSs) are regions susceptible to replication stress and are hotspots for chromosomal instability in cancer. Several features were suggested to underlie CFS instability, however, these features are prevalent across the genome. Therefore, the molecular mechanisms underlying CFS instability remain unclear. Here, we explore the transcriptional profile and DNA replication timing (RT) under mild replication stress in the context of the 3D genome organization. The results reveal a fragility signature, comprised of a TAD boundary overlapping a highly transcribed large gene with APH-induced RT-delay. This signature enables precise mapping of core fragility regions in known CFSs and identification of novel fragile sites. CFS stability may be compromised by incomplete DNA replication and repair in TAD boundaries core fragility regions leading to genomic instability. The identified fragility signature will allow for a more comprehensive mapping of CFSs and pave the way for investigating mechanisms promoting genomic instability in cancer.


Assuntos
Sítios Frágeis do Cromossomo/genética , Período de Replicação do DNA/genética , Genoma Humano , Instabilidade Genômica , Afidicolina/farmacologia , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação , Mapeamento Cromossômico/métodos , DNA/química , Período de Replicação do DNA/efeitos dos fármacos , Fibroblastos , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genética , Conformação de Ácido Nucleico , Sensibilidade e Especificidade , Transcrição Gênica/efeitos dos fármacos
11.
Genome Biol ; 21(1): 76, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209126

RESUMO

BACKGROUND: DNA replication in mammalian cells occurs in a defined temporal order during S phase, known as the replication timing (RT) programme. Replication timing is developmentally regulated and correlated with chromatin conformation and local transcriptional potential. Here, we present RT profiles of unprecedented temporal resolution in two human embryonic stem cell lines, human colon carcinoma line HCT116, and mouse embryonic stem cells and their neural progenitor derivatives. RESULTS: Fine temporal windows revealed a remarkable degree of cell-to-cell conservation in RT, particularly at the very beginning and ends of S phase, and identified 5 temporal patterns of replication in all cell types, consistent with varying degrees of initiation efficiency. Zones of replication initiation (IZs) were detected throughout S phase and interacted in 3D space preferentially with other IZs of similar firing time. Temporal transition regions were resolved into segments of uni-directional replication punctuated at specific sites by small, inefficient IZs. Sites of convergent replication were divided into sites of termination or large constant timing regions consisting of many synchronous IZs in tandem. Developmental transitions in RT occured mainly by activating or inactivating individual IZs or occasionally by altering IZ firing time, demonstrating that IZs, rather than individual origins, are the units of developmental regulation. Finally, haplotype phasing revealed numerous regions of allele-specific and allele-independent asynchronous replication. Allele-independent asynchronous replication was correlated with the presence of previously mapped common fragile sites. CONCLUSIONS: Altogether, these data provide a detailed temporal choreography of DNA replication in mammalian cells.


Assuntos
Replicação do DNA , Animais , Linhagem Celular , Cromatina/genética , Período de Replicação do DNA , Células-Tronco Embrionárias/metabolismo , Feminino , Células HCT116 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Análise de Sequência de DNA , Transcrição Gênica
12.
Blood Adv ; 3(21): 3201-3213, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31698451

RESUMO

Human B-cell precursor acute lymphoid leukemias (BCP-ALLs) comprise a group of genetically and clinically distinct disease entities with features of differentiation arrest at known stages of normal B-lineage differentiation. We previously showed that BCP-ALL cells display unique and clonally heritable, stable DNA replication timing (RT) programs (ie, programs describing the variable order of replication and subnuclear 3D architecture of megabase-scale chromosomal units of DNA in different cell types). To determine the extent to which BCP-ALL RT programs mirror or deviate from specific stages of normal human B-cell differentiation, we transplanted immunodeficient mice with quiescent normal human CD34+ cord blood cells and obtained RT signatures of the regenerating B-lineage populations. We then compared these with RT signatures for leukemic cells from a large cohort of BCP-ALL patients with varied genetic subtypes and outcomes. The results identify BCP-ALL subtype-specific features that resemble specific stages of B-cell differentiation and features that seem to be associated with relapse. These results suggest that the genesis of BCP-ALL involves alterations in RT that reflect biologically significant and potentially clinically relevant leukemia-specific epigenetic changes.


Assuntos
Cromossomos/genética , Período de Replicação do DNA , Leucemia/genética , Leucemia/patologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Biomarcadores , Neoplasias do Sistema Nervoso Central/secundário , Biologia Computacional/métodos , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Perfilação da Expressão Gênica , Variação Genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Xenoenxertos , Humanos , Imunofenotipagem , Leucemia/mortalidade , Masculino , Camundongos , Camundongos Knockout , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia
13.
Nat Genet ; 50(10): 1388-1398, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202056

RESUMO

Structural variants (SVs) can contribute to oncogenesis through a variety of mechanisms. Despite their importance, the identification of SVs in cancer genomes remains challenging. Here, we present a framework that integrates optical mapping, high-throughput chromosome conformation capture (Hi-C), and whole-genome sequencing to systematically detect SVs in a variety of normal or cancer samples and cell lines. We identify the unique strengths of each method and demonstrate that only integrative approaches can comprehensively identify SVs in the genome. By combining Hi-C and optical mapping, we resolve complex SVs and phase multiple SV events to a single haplotype. Furthermore, we observe widespread structural variation events affecting the functions of noncoding sequences, including the deletion of distal regulatory sequences, alteration of DNA replication timing, and the creation of novel three-dimensional chromatin structural domains. Our results indicate that noncoding SVs may be underappreciated mutational drivers in cancer genomes.


Assuntos
Genoma Humano , Variação Estrutural do Genoma , Neoplasias/genética , Biologia de Sistemas/métodos , Células A549 , Linhagem Celular Tumoral , Mapeamento Cromossômico , DNA de Neoplasias/análise , DNA de Neoplasias/genética , Genes Neoplásicos , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Células K562 , Desequilíbrio de Ligação , Análise de Sequência de DNA/métodos , Integração de Sistemas
14.
Cell Syst ; 7(2): 208-218.e11, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-29936186

RESUMO

A large amount of multi-species functional genomic data from high-throughput assays are becoming available to help understand the molecular mechanisms for phenotypic diversity across species. However, continuous-trait probabilistic models, which are key to such comparative analysis, remain under-explored. Here we develop a new model, called phylogenetic hidden Markov Gaussian processes (Phylo-HMGP), to simultaneously infer heterogeneous evolutionary states of functional genomic features in a genome-wide manner. Both simulation studies and real data application demonstrate the effectiveness of Phylo-HMGP. Importantly, we applied Phylo-HMGP to analyze a new cross-species DNA replication timing (RT) dataset from the same cell type in five primate species (human, chimpanzee, orangutan, gibbon, and green monkey). We demonstrate that our Phylo-HMGP model enables discovery of genomic regions with distinct evolutionary patterns of RT. Our method provides a generic framework for comparative analysis of multi-species continuous functional genomic signals to help reveal regions with conserved or lineage-specific regulatory roles.


Assuntos
Replicação do DNA , Evolução Molecular , Genômica/métodos , Modelos Genéticos , Animais , Humanos , Cadeias de Markov , Modelos Estatísticos , Fenótipo , Software , Especificidade da Espécie
15.
Genome Res ; 28(6): 800-811, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29735606

RESUMO

DNA replication occurs in a defined temporal order known as the replication-timing (RT) program. RT is regulated during development in discrete chromosomal units, coordinated with transcriptional activity and 3D genome organization. Here, we derived distinct cell types from F1 hybrid musculus × castaneus mouse crosses and exploited the high single-nucleotide polymorphism (SNP) density to characterize allelic differences in RT (Repli-seq), genome organization (Hi-C and promoter-capture Hi-C), gene expression (total nuclear RNA-seq), and chromatin accessibility (ATAC-seq). We also present HARP, a new computational tool for sorting SNPs in phased genomes to efficiently measure allele-specific genome-wide data. Analysis of six different hybrid mESC clones with different genomes (C57BL/6, 129/sv, and CAST/Ei), parental configurations, and gender revealed significant RT asynchrony between alleles across ∼12% of the autosomal genome linked to subspecies genomes but not to parental origin, growth conditions, or gender. RT asynchrony in mESCs strongly correlated with changes in Hi-C compartments between alleles but not as strongly with SNP density, gene expression, imprinting, or chromatin accessibility. We then tracked mESC RT asynchronous regions during development by analyzing differentiated cell types, including extraembryonic endoderm stem (XEN) cells, four male and female primary mouse embryonic fibroblasts (MEFs), and neural precursor cells (NPCs) differentiated in vitro from mESCs with opposite parental configurations. We found that RT asynchrony and allelic discordance in Hi-C compartments seen in mESCs were largely lost in all differentiated cell types, accompanied by novel sites of allelic asynchrony at a considerably smaller proportion of the genome, suggesting that genome organization of homologs converges to similar folding patterns during cell fate commitment.


Assuntos
Período de Replicação do DNA/genética , Replicação do DNA/genética , Genoma/genética , Células-Tronco Neurais/citologia , Alelos , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Feminino , Fibroblastos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Regiões Promotoras Genéticas
16.
Nat Protoc ; 13(5): 819-839, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29599440

RESUMO

This protocol is an extension to: Nat. Protoc. 6, 870-895 (2014); doi:10.1038/nprot.2011.328; published online 02 June 2011Cycling cells duplicate their DNA content during S phase, following a defined program called replication timing (RT). Early- and late-replicating regions differ in terms of mutation rates, transcriptional activity, chromatin marks and subnuclear position. Moreover, RT is regulated during development and is altered in diseases. Here, we describe E/L Repli-seq, an extension of our Repli-chip protocol. E/L Repli-seq is a rapid, robust and relatively inexpensive protocol for analyzing RT by next-generation sequencing (NGS), allowing genome-wide assessment of how cellular processes are linked to RT. Briefly, cells are pulse-labeled with BrdU, and early and late S-phase fractions are sorted by flow cytometry. Labeled nascent DNA is immunoprecipitated from both fractions and sequenced. Data processing leads to a single bedGraph file containing the ratio of nascent DNA from early versus late S-phase fractions. The results are comparable to those of Repli-chip, with the additional benefits of genome-wide sequence information and an increased dynamic range. We also provide computational pipelines for downstream analyses, for parsing phased genomes using single-nucleotide polymorphisms (SNPs) to analyze RT allelic asynchrony, and for direct comparison to Repli-chip data. This protocol can be performed in up to 3 d before sequencing, and requires basic cellular and molecular biology skills, as well as a basic understanding of Unix and R.


Assuntos
Divisão Celular , Replicação do DNA , DNA/biossíntese , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Células-Tronco Embrionárias Murinas/fisiologia , Tempo , Animais , Bromodesoxiuridina/metabolismo , Linhagem Celular , Imunoprecipitação da Cromatina , Camundongos , Coloração e Rotulagem/métodos
17.
Proc Natl Acad Sci U S A ; 114(51): E10972-E10980, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29196523

RESUMO

Progeroid syndromes are rare genetic disorders that phenotypically resemble natural aging. Different causal mutations have been identified, but no molecular alterations have been identified that are in common to these diseases. DNA replication timing (RT) is a robust cell type-specific epigenetic feature highly conserved in the same cell types from different individuals but altered in disease. Here, we characterized DNA RT program alterations in Hutchinson-Gilford progeria syndrome (HGPS) and Rothmund-Thomson syndrome (RTS) patients compared with natural aging and cellular senescence. Our results identified a progeroid-specific RT signature that is common to cells from three HGPS and three RTS patients and distinguishes them from healthy individuals across a wide range of ages. Among the RT abnormalities, we identified the tumor protein p63 gene (TP63) as a gene marker for progeroid syndromes. By using the redifferentiation of four patient-derived induced pluripotent stem cells as a model for the onset of progeroid syndromes, we tracked the progression of RT abnormalities during development, revealing altered RT of the TP63 gene as an early event in disease progression of both HGPS and RTS. Moreover, the RT abnormalities in progeroid patients were associated with altered isoform expression of TP63 Our findings demonstrate the value of RT studies to identify biomarkers not detected by other methods, reveal abnormal TP63 RT as an early event in progeroid disease progression, and suggest TP63 gene regulation as a potential therapeutic target.


Assuntos
Período de Replicação do DNA , Progéria/genética , Idoso de 80 Anos ou mais , Biomarcadores , Criança , Fibroblastos/metabolismo , Expressão Gênica , Genômica/métodos , Humanos , Recém-Nascido , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Progéria/metabolismo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
18.
Exp Hematol ; 51: 71-82.e3, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28433605

RESUMO

Genome-wide DNA replication timing (RT) profiles reflect the global three-dimensional chromosome architecture of cells. They also provide a comprehensive and unique megabase-scale picture of cellular epigenetic state. Thus, normal differentiation involves reproducible changes in RT, and transformation generally perturbs these, although the potential effects of altered RT on the properties of transformed cells remain largely unknown. A major challenge to interrogating these issues in human acute lymphoid leukemia (ALL) is the low proliferative activity of most of the cells, which may be further reduced in cryopreserved samples and difficult to overcome in vitro. In contrast, the ability of many human ALL cell populations to expand when transplanted into highly immunodeficient mice is well documented. To examine the stability of DNA RT profiles of serially passaged xenografts of primary human B- and T-ALL cells, we first devised a method that circumvents the need for bromodeoxyuridine incorporation to distinguish early versus late S-phase cells. Using this and more standard protocols, we found consistently strong retention in xenografts of the original patient-specific RT features. Moreover, in a case in which genomic analyses indicated changing subclonal dynamics in serial passages, the RT profiles tracked concordantly. These results indicate that DNA RT is a relatively stable feature of human ALLs propagated in immunodeficient mice. In addition, they suggest the power of this approach for future interrogation of the origin and consequences of altered DNA RT in ALL.


Assuntos
Proliferação de Células , Replicação do DNA , DNA de Neoplasias/biossíntese , Transplante de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Animais , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia
20.
Nutr Metab Insights ; 9: 31-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27429558

RESUMO

This study aimed to develop and evaluate the validity of a food frequency questionnaire (FFQ) for rural Rwandans. Since our FFQ was developed to assess malnutrition, it measured energy, protein, vitamin A, and iron intakes only. We collected 260 weighed food records (WFRs) from a total of 162 Rwandans. Based on the WFR data, we developed a tentative FFQ and examined the food list by percent contribution to energy and nutrient intakes. To assess the validity, nutrient intakes estimated from the FFQ were compared with those calculated from three-day WFRs by correlation coefficient and cross-classification for 17 adults. Cumulative contributions of the 18-item FFQ to the total intakes of energy and nutrients reached nearly 100%. Crude and energy-adjusted correlation coefficients ranged from -0.09 (vitamin A) to 0.58 (protein) and from -0.19 (vitamin A) to 0.68 (iron), respectively. About 50%-60% of the participants were classified into the same tertile. Our FFQ provided acceptable validity for energy and iron intakes and could rank Rwandan adults in eastern rural area correctly according to their energy and iron intakes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...