Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Sci Rep ; 14(1): 3068, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321256

RESUMO

Radiation therapy used in the treatment of cancer causes skin damage, and no method of care has been established thus far. Recently, it has become clear that sericin derived from silkworm cocoons has moisturizing and antioxidant functions. In addition, green cocoon-derived sericin, which is rich in flavonoids, may have enhanced functions. However, whether this green cocoon-derived sericin can reduce radiotherapy-induced skin damage is unclear. In the present study, we aimed at establishing care methods to reduce skin cell damage caused by X-irradiation using green cocoon-derived sericin. We investigated its effect on human keratinocytes using lactate dehydrogenase activity to indicate damage reduction. Our results showed that green cocoon-derived sericin reduced cell damage caused by X-irradiation. However, this effect was not observed when cells were treated before X-irradiation or with a sericin derived from white cocoons. In addition, green cocoon-derived sericin decreased the levels of reactive oxygen species and lipid peroxidation. Our results suggest that green cocoon sericin mitigates the damaging effect of X-irradiation on cells, hence presenting potential usefulness in reducing skin damage from radiation therapy and opening new avenues in the care of cancer patients.


Assuntos
Bombyx , Sericinas , Animais , Humanos , Sericinas/farmacologia , Queratinócitos , Pele , Antioxidantes , Seda
2.
J Appl Clin Med Phys ; 25(1): e14215, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37987544

RESUMO

PURPOSE: We sought to develop machine learning models to predict the results of patient-specific quality assurance (QA) for volumetric modulated arc therapy (VMAT), which were represented by several dose-evaluation metrics-including the gamma passing rates (GPRs)-and criteria based on the radiomic features of 3D dose distribution in a phantom. METHODS: A total of 4,250 radiomic features of 3D dose distribution in a cylindrical dummy phantom for 140 arcs from 106 clinical VMAT plans were extracted. We obtained the following dose-evaluation metrics: GPRs with global and local normalization, the dose difference (DD) in 1% and 2% passing rates (DD1% and DD2%) for 10% and 50% dose threshold, and the distance-to-agreement in 1-mm and 2-mm passing rates (DTA1 mm and DTA2 mm) for 0.5%/mm and 1.0%.mm dose gradient threshold determined by measurement using a diode array in patient-specific QA. The machine learning regression models for predicting the values of the dose-evaluation metrics using the radiomic features were developed based on the elastic net (EN) and extra trees (ET) models. The feature selection and tuning of hyperparameters were performed with nested cross-validation in which four-fold cross-validation is used within the inner loop, and the performance of each model was evaluated in terms of the root mean square error (RMSE), the mean absolute error (MAE), and Spearman's rank correlation coefficient. RESULTS: The RMSE and MAE for the developed machine learning models ranged from <1% to nearly <10% depending on the dose-evaluation metric, the criteria, and dose and dose gradient thresholds used for both machine learning models. It was advantageous to focus on high dose region for predicating global GPR, DDs, and DTAs. For certain metrics and criteria, it was possible to create models applicable for patients' heterogeneity by training only with dose distributions in phantom. CONCLUSIONS: The developed machine learning models showed high performance for predicting dose-evaluation metrics especially for high dose region depending on the metric and criteria. Our results demonstrate that the radiomic features of dose distribution can be considered good indicators of the plan complexity and useful in predicting measured dose evaluation metrics.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radiômica , Aprendizado de Máquina , Raios gama , Dosagem Radioterapêutica
3.
J Appl Clin Med Phys ; 24(12): e14136, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37633834

RESUMO

PURPOSE: The purpose of this study was to create and evaluate deep learning-based models to detect and classify errors of multi-leaf collimator (MLC) modeling parameters in volumetric modulated radiation therapy (VMAT), namely the transmission factor (TF) and the dosimetric leaf gap (DLG). METHODS: A total of 33 clinical VMAT plans for prostate and head-and-neck cancer were used, assuming a cylindrical and homogeneous phantom, and error plans were created by altering the original value of the TF and the DLG by ± 10, 20, and 30% in the treatment planning system (TPS). The Gaussian filters of σ = 0.5 $\sigma = 0.5$ and 1.0 were applied to the planar dose maps of the error-free plan to mimic the measurement dose map, and thus dose difference maps between the error-free and error plans were obtained. We evaluated 3 deep learning-based models, created to perform the following detections/classifications: (1) error-free versus TF error, (2) error-free versus DLG error, and (3) TF versus DLG error. Models to classify the sign of the errors were also created and evaluated. A gamma analysis was performed for comparison. RESULTS: The detection and classification of TF and DLG error were feasible for σ = 0.5 $\sigma = 0.5$ ; however, a considerable reduction of accuracy was observed for σ = 1.0 $\sigma = 1.0$ depending on the magnitude of error and treatment site. The sign of errors was detectable by the specifically trained models for σ = 0.5 $\sigma = 0.5$ and 1.0. The gamma analysis could not detect errors. CONCLUSIONS: We demonstrated that the deep learning-based models could feasibly detect and classify TF and DLG errors in VMAT dose distributions, depending on the magnitude of the error, treatment site, and the degree of mimicked measurement doses.


Assuntos
Aprendizado Profundo , Radioterapia de Intensidade Modulada , Masculino , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radiometria
4.
Jpn J Radiol ; 41(5): 561-568, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36538162

RESUMO

PURPOSE: The liver is the largest organ in the abdomen and is often irradiated in radiotherapy for non-hepatic malignancies. As most of the studies on changes in liver volume are on hepatocellular carcinoma based on liver dysfunction, there are few studies on healthy liver. In this study, we investigated the relationship between absorbed dose and changes in liver volume after chemoradiotherapy for esophageal cancer in patients without apparent pre-treatment liver dysfunction. MATERIALS AND METHODS: Liver volume was compared between pre-treatment, acute (< 4 months) and late post-treatment (≥ 4 and < 13 months) phases in 12 patients using abdominal plain CT images. Volume changes were evaluated separately for the right and left lobes. We investigated the relationship between the volume change and VxGy (percentage of volume received x Gy or more dose). In addition, volume change for each absorbed dose was investigated using deformable image registration. RESULTS: The volume of the left lobe showed a significant decrease between pre-treatment and acute post-treatment phases (p < 0.001), while the volume of right lobe and between acute and late post-treatment phase of left lobe did not. The mean value of the volume reduction rate of the left lobe was 51.1% and equivalent to the mean value of V30Gy. As a result of the volume change for each absorbed dose, the volume reduction rate increased as the absorbed dose increased, and a significant volume loss was observed at doses above 11 Gy. CONCLUSION: Volume of the liver significantly decreased only in the acute phase after chemoradiotherapy for esophageal cancer. The tolerable dose for a healthy liver is generally considered to be 30 Gy, but attention should be paid to lower doses to avoid radiation-induced liver injury.


Assuntos
Carcinoma Hepatocelular , Neoplasias Esofágicas , Neoplasias Hepáticas , Lesões por Radiação , Humanos , Dosagem Radioterapêutica , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/radioterapia , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/terapia , Quimiorradioterapia/efeitos adversos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/radioterapia , Abdome
6.
J Appl Clin Med Phys ; 22(7): 266-275, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34151498

RESUMO

PURPOSE: We calculated the dosimetric indices and estimated the tumor control probability (TCP) considering six degree-of-freedom (6DoF) patient setup errors in stereotactic radiosurgery (SRS) using a single-isocenter technique. METHODS: We used simulated spherical gross tumor volumes (GTVs) with diameters of 1.0 cm (GTV 1), 2.0 cm (GTV 2), and 3.0 cm (GTV 3), and the distance (d) between the target center and isocenter was set to 0, 5, and 10 cm. We created the dose distribution by convolving the blur component to uniform dose distribution. The prescription dose was 20 Gy and the dose distribution was adjusted so that D95 (%) of each GTV was covered by 100% of the prescribed dose. The GTV was simultaneously rotated within 0°-1.0° (δR) around the x-, y-, and z-axes and then translated within 0-1.0 mm (δT) in the x-, y-, and z-axis directions. D95, conformity index (CI), and conformation number (CN) were evaluated by varying the distance from the isocenter. The TCP was estimated by translating the calculated dose distribution into a biological response. In addition, we derived the x-y-z coordinates with the smallest TCP reduction rate that minimize the sum of squares of the residuals as the optimal isocenter coordinates using the relationship between 6DoF setup error, distance from isocenter, and GTV size. RESULTS: D95, CI, and CN were decreased with increasing isocenter distance, decreasing GTV size, and increasing setup error. TCP of GTVs without 6DoF setup error was estimated to be 77.0%. TCP were 25.8% (GTV 1), 35.0% (GTV 2), and 53.0% (GTV 3) with (d, δT, δR) = (10 cm, 1.0 mm, 1.0°). The TCP was 52.3% (GTV 1), 54.9% (GTV 2), and 66.1% (GTV 3) with (d, δT, δR) = (10 cm, 1.0 mm, 1.0°) at the optimal isocenter position. CONCLUSION: The TCP in SRS for multiple brain metastases with a single-isocenter technique may decrease with increasing isocenter distance and decreasing GTV size when the 6DoF setup errors are exceeded (1.0 mm, 1.0°). Additionally, it might be possible to better maintain TCP for GTVs with 6DoF setup errors by using the optimal isocenter position.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Humanos , Radiobiologia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
7.
J Radiat Res ; 62(3): 525-532, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33823010

RESUMO

We aimed to compare the outcomes of high-dose-rate brachytherapy (HDR-BT) boost and external beam radiation therapy (EBRT) alone for high-risk prostate cancer. This was a single-center, retrospective and observational study. Consecutive patients who underwent initial radical treatment by HDR-BT boost or EBRT alone from June 2009 to May 2016 at the Niigata University Medical and Dental Hospital, Japan were included. A total of 96 patients underwent HDR-BT boost, and 61 underwent EBRT alone. The prescription dose of HDR-BT boost was set to 18 Gy twice a day with EBRT 39 Gy/13 fractions. The dose for EBRT alone was mostly 70 Gy/28 fractions. The high-risk group received >6 months of prior androgen deprivation therapy. Overall survival, biochemical-free survival, local control and distant metastasis-free survival rates at 5 years were analyzed. The incidence of urological and gastrointestinal late adverse events of Grade 2 and above was also summarized. In the National Comprehensive Cancer Network (NCCN) high-risk calssification, HDR-BT boost had a significantly higher biochemical-free survival rate at 5 years (98.9% versus 90.7%, P = 0.04). Urethral strictures were more common in the HDR-BT boost group. We will continuously observe the progress of the study patients and determine the longer term results.


Assuntos
Braquiterapia , Neoplasias da Próstata/radioterapia , Idoso , Idoso de 80 Anos ou mais , Antagonistas de Androgênios/uso terapêutico , Relação Dose-Resposta à Radiação , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/tratamento farmacológico , Fatores de Risco
8.
Radiol Phys Technol ; 14(1): 57-63, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33393057

RESUMO

Through geometrical simulation, we evaluated the effect of rotational error in patient setup on geometrical coverage and calculated the maximum distance between the isocenter and target, where the clinical PTV margin secures geometrical coverage with a single-isocenter technique. We used simulated spherical GTVs with diameters of 1.0 (GTV 1), 1.5 (GTV 2), 2.0 (GTV 3), and 3.0 cm (GTV 4). The location of the target center was set such that the distance between the target and isocenter ranged from 0 to 15 cm. We created geometrical coverage vectors so that each target was entirely covered by 100% of the prescribed dose. The vectors of the target positions were simultaneously rotated within a range of 0°-2.0° around the x-, y-, and z-axes. For each rotational error, the reduction in geometrical coverage of the targets was calculated and compared with that obtained for a rotational error of 0°. The tolerance value of the geometrical coverage reduction was defined as 5% of the GTV. The maximum distance that satisfied the 5% tolerance value for different values of rotational error at a clinical PTV margin of 0.1 cm was calculated. When the rotational errors were 0.5° for a 0.1 cm PTV margin, the maximum distances were as follows: GTV 1: 7.6 cm; GTV 2: 10.9 cm; GTV 3: 14.3 cm; and GTV 4: 21.4 cm. It might be advisable to exclude targets that are > 7.6 cm away from the isocenter with a single-isocenter technique to satisfy the tolerance value for all GTVs.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Neoplasias Encefálicas/cirurgia , Simulação por Computador , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
9.
Med Phys ; 48(3): 991-1002, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33382467

RESUMO

PURPOSE: We sought to develop machine learning models to detect multileaf collimator (MLC) modeling errors with the use of radiomic features of fluence maps measured in patient-specific quality assurance (QA) for intensity-modulated radiation therapy (IMRT) with an electric portal imaging device (EPID). METHODS: Fluence maps measured with EPID for 38 beams from 19 clinical IMRT plans were assessed. Plans with various degrees of error in MLC modeling parameters [i.e., MLC transmission factor (TF) and dosimetric leaf gap (DLG)] and plans with an MLC positional error for comparison were created. For a total of 152 error plans for each type of error, we calculated fluence difference maps for each beam by subtracting the calculated maps from the measured maps. A total of 837 radiomic features were extracted from each fluence difference map, and we determined the number of features used for the training dataset in the machine learning models by using random forest regression. Machine learning models using the five typical algorithms [decision tree, k-nearest neighbor (kNN), support vector machine (SVM), logistic regression, and random forest] for binary classification between the error-free plan and the plan with the corresponding error for each type of error were developed. We used part of the total dataset to perform fourfold cross-validation to tune the models, and we used the remaining test dataset to evaluate the performance of the developed models. A gamma analysis was also performed between the measured and calculated fluence maps with the criteria of 3%/2 and 2%/2 mm for all of the types of error. RESULTS: The radiomic features and its optimal number were similar for the models for the TF and the DLG error detection, which was different from the MLC positional error. The highest sensitivity was obtained as 0.913 for the TF error with SVM and logistic regression, 0.978 for the DLG error with kNN and SVM, and 1.000 for the MLC positional error with kNN, SVM, and random forest. The highest specificity was obtained as 1.000 for the TF error with a decision tree, SVM, and logistic regression, 1.000 for the DLG error with a decision tree, logistic regression, and random forest, and 0.909 for the MLC positional error with a decision tree and logistic regression. The gamma analysis showed the poorest performance in which sensitivities were 0.737 for the TF error and the DLG error and 0.882 for the MLC positional error for 3%/2 mm. The addition of another type of error to fluence maps significantly reduced the sensitivity for the TF and the DLG error, whereas no effect was observed for the MLC positional error detection. CONCLUSIONS: Compared to the conventional gamma analysis, the radiomics-based machine learning models showed higher sensitivity and specificity in detecting a single type of the MLC modeling error and the MLC positional error. Although the developed models need further improvement for detecting multiple types of error, radiomics-based IMRT QA was shown to be a promising approach for detecting the MLC modeling error.


Assuntos
Aprendizado de Máquina , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Raios gama , Humanos , Radiometria , Dosagem Radioterapêutica
10.
J Appl Clin Med Phys ; 21(12): 155-165, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33119953

RESUMO

In conventional stereotactic radiosurgery (SRS), treatment of multiple brain metastases using multiple isocenters is time-consuming resulting in long dose delivery times for patients. A single-isocenter technique has been developed which enables the simultaneous irradiation of multiple targets at one isocenter. This technique requires accurate positioning of the patient to ensure optimal dose coverage. We evaluated the effect of six degrees of freedom (6DoF) setup errors in patient setups on SRS dose distributions for multiple brain metastases using a single-isocenter technique. We used simulated spherical gross tumor volumes (GTVs) with diameters ranging from 1.0 to 3.0 cm. The distance from the isocenter to the target's center was varied from 0 to 15 cm. We created dose distributions so that each target was entirely covered by 100% of the prescribed dose. The target's position vectors were rotated from 0°-2.0° and translated from 0-1.0 mm with respect to the three axes in space. The reduction in dose coverage for the targets for each setup error was calculated and compared with zero setup error. The calculated margins for the GTV necessary to satisfy the tolerance values for loss of GTV coverage of 3% to 10% were defined as coverage-based margins. In addition, the maximum isocenter to target distance for different 6DoF setup errors was calculated to satisfy the tolerance values. The dose coverage reduction and coverage-based margins increased as the target diameter decreased, and the distance and 6DoF setup error increased. An increase in setup error when a single-isocenter technique is used may increase the risk of missing the tumor; this risk increases with increasing distance from the isocenter and decreasing tumor size.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
11.
Clin Transl Radiat Oncol ; 20: 13-18, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31737796

RESUMO

BACKGROUND AND PURPOSE: Concurrent chemoradiotherapy (CCRT) for head and neck cancer (HNC) is a risk factor for oral candidiasis (OC). As Candida spp. are highly virulent, we conducted a retrospective study to determine whether OC increases the severity of dysphagia related to mucositis in HNC patients. PATIENTS AND METHODS: We retrospectively analyzed the cases of consecutive patients with carcinomas of the oral cavity, pharynx, and larynx who underwent CCRT containing cisplatin (CDDP) at our hospital. The diagnosis of OC was based on gross mucosal appearance. We performed a multivariate analysis to determine whether OC was associated with the development of grade 3 dysphagia in the Radiation Therapy Oncology Group (RTOG) Acute Toxicity Criteria. The maximum of the daily opioid doses was compared between the patients with and without OC. RESULTS: We identified 138 HNC patients. OC was observed in 51 patients (37%). By the time of their OC diagnosis, 19 (37%) had already developed grade 3 dysphagia. Among the 30 patients receiving antifungal therapy, 12 (40%) showed clinical deterioration. In the multivariate analysis, OC was independently associated with grade 3 dysphagia (OR 2.75; 95%CI 1.22-6.23; p = 0.015). The patients with OC required significantly higher morphine-equivalent doses of opioids (45 vs. 30 mg/day; p = 0.029). CONCLUSION: Candida infection causes refractory dysphagia. It is worth investigating whether antifungal prophylaxis reduces severe dysphagia related to candidiasis.

12.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 75(12): 1426-1436, 2019.
Artigo em Japonês | MEDLINE | ID: mdl-31866641

RESUMO

In monitor unit (MU) independent verification by calculation for irregular field (MLC field) using multileaf collimator in X-ray therapy, it has become common to use collimator scatter factor (Sc) and phantom scatter factor (Sp) instead of total scatter factor (Sc, p). It is usually expressed as Sc, p (A)=Sc (A)×Sp (A), and the field size A is considered but the depth d is not. Sc is data of in-air output, and measure with a mini-phantom at constant depth to remove electron contamination. On the other hand, Sp is obtained from measurement data of Sc, p and Sc, and can be expressed as Sc, p (d, A)=Sc (constant depth, A)×Sp (d, A) at an arbitrary depth d, thus Sp depends on the depth of Sc, p. Therefore, Sp needs to consider depth. In addition, a linear accelerator equipped with the tertiary MLC has two field sizes, that are collimator field by upper and lower collimators and MLC field by tertiary MLC below them. In MU independent verification by calculation, it is often used that the estimated value of Sp obtained by converting MLC field to equivalent square field and referring to data of Sp in square field. To convert the MLC field to equivalent square field, a conversion formula from sector radius r to equivalent square field L by Clarkson's sector integration (Clarkson method) is used. In this study, using 24 types of MLC fields to evaluate estimation accuracy due to the difference of conversion formula in Clarkson method, we estimated value of Sp using r=0.5611L of B-Clarkson method and using r=0.5580L of A-Clarkson method. And the difference with the measured value of Sp obtained by measuring Sc, p and Sc in the same MLC fields was compared. While, to evaluate estimation accuracy due to the different depths using these Clarkson methods, the difference between estimated value and measured value of Sp similarly obtained at depth of 5, 10 and 15 cm was compared. As results, estimated value of Sp using A-Clarkson method than using B-Clarkson method was close to measured value, and it was the same trend at depth of 5, 10 and 15 cm. Therefore, it was suggested that estimation accuracy of Sp by A-Clarkson method is higher than B-Clarkson method when verifying beams with different depths in MU independent verification by calculation for MLC field.


Assuntos
Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Espalhamento de Radiação , Fator de Crescimento de Hepatócito , Radiometria , Dosagem Radioterapêutica
13.
Artigo em Japonês | MEDLINE | ID: mdl-31217403

RESUMO

In X-ray therapy, equivalent square field (side of equivalent square field) is important because it influences the accuracy of independent verification of monitor unit (MU) by calculation. To calculate the side of equivalent square field for rectangular fields, we often use a table of domestic standard measurement method (Day's method), or A/P method calculated by area-perimeter ratio. The sides of equivalent square fields of these methods are assumed to be unchanged by depth and energy, but there are reports that it is not valid. Therefore, the depth dependency of side of equivalent square fields of Day's method, A/P method, and area ratio correction (ARC) method was compared by measuring phantom scatter factors (Sp). From the analysis of Sp measured at different depths, the estimated value of Sp on the equivalent square side of the Day's method and A/P method had a depth dependency that the difference from the measured value was large when the measurement depth was deep. The estimated value of Sp on the equivalent square side of the ARC method had a small difference from the measured value even when the measurement depth was deep, and the depth dependency was small compared with the Day's method and the A/P method. Side of equivalent square field of ARC method had a smaller difference of depth dependency than in the case of Day's method and A/P method. Therefore, in the independent verification of MU for rectangular field, using the equivalent square side of the ARC method is better.


Assuntos
Fator de Crescimento de Hepatócito , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Espalhamento de Radiação
14.
J Radiat Res ; 60(2): 249-256, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649406

RESUMO

There are no quantitative selection criteria for identifying high-grade glioma (HGG) patients who are suited for volumetric-modulated arc therapy (VMAT). This study aimed to develop selection criteria that can be used for the selection of the optimal treatment modality in HGG. We analyzed 20 patients with HGG treated by 3D conformal radiotherapy (3DCRT). First, VMAT plans were created for each patient retrospectively. For each plan, the normal tissue complication probability (NTCP) for normal brain was calculated. We then divided the patients based on the NTCPs of the 3DCRT plans for normal brain, using the threshold of 5%. We compared the NTCPs of the two plans and the gross tumor volumes (GTVs) of the two groups. For the GTVs, we used receiver operating characteristic curves to identify the cut-off value for predicting NTCP < 5%. We determined the respective correlations between the GTV and the GTV's largest cross-sectional diameter and largest cross-sectional area. In the NTCP ≥ 5% group, the NTCPs for the VMAT plans were significantly lower than those for the 3DCRT plans (P = 0.0011). The NTCP ≥ 5% group's GTV was significantly larger than that of the NTCP < 5% group (P = 0.0016), and the cut-off value of the GTV was 130.5 cm3. The GTV was strongly correlated with the GTV's largest cross-sectional diameter (R2 = 0.82) and largest cross-sectional area (R2 = 0.94), which produced the cut-off values of 7.5 cm and 41 cm2, respectively. It was concluded that VMAT is more appropriate than 3DCRT in cases in which the GTV is ≥130.5 cm3.


Assuntos
Glioma/patologia , Glioma/radioterapia , Radioterapia Conformacional , Radioterapia de Intensidade Modulada , Adulto , Idoso , Encéfalo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Probabilidade , Radiometria , Planejamento da Radioterapia Assistida por Computador , Carga Tumoral
15.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 74(11): 1286-1292, 2018.
Artigo em Japonês | MEDLINE | ID: mdl-30464096

RESUMO

Countermeasures against respiratory movement are important for tumors of thorax and abdomen in stereotactic body radiation therapy. In the present paper, a web-camera-based-respiratory monitoring method without contact with patient's body was proposed for respiratory study. Thoracic and abdominal motion images were taken by a web camera, and were analyzed using simple image-processing techniques for obtaining respiratory waveforms. Four motion images with different respiration rate were obtained from resusci anne simulator. Respiration waveforms were estimated from the moving images by the proposed method, and were compared with respiration waveforms obtained by the conventional respiratory monitoring device. That was found to have a strong correlation. In addition, the two waveforms were similar in Bland-Altman method comparison. The proposed method can provide non-contact, non-invasive, simple, and realistic respiratory monitoring system for radiotherapy.


Assuntos
Processamento de Imagem Assistida por Computador , Movimento , Respiração , Humanos , Movimento (Física) , Tórax/diagnóstico por imagem
16.
Clin Transl Radiat Oncol ; 9: 12-17, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29594245

RESUMO

BACKGROUND AND PURPOSE: To compare chemoradiotherapy (CRT) with low-dose continuous 5-fluorouracil (5FU) to CRT with 5FU+cisplatin (CDDP) for esophageal squamous cell carcinoma (ESCC) in a retrospective cohort study. METHODS AND MATERIALS: We reviewed the cases of Stage I-IV ESCC patients who underwent definitive CRT in 2000-2014. Concomitant chemotherapy was one of the three regimens: (1) high-dose intermittent 5FU and CDDP (standard-dose FP: SDFP), (2) low-dose continuous 5FU and CDDP (LDFP), or (3) low-dose continuous 5FU (LD5FU). The general selection criteria for chemotherapy were: SDFP for patients aged <70 yrs; LDFP for those aged 70-74 yrs; LD5FU for those aged ≥75 yrs or with performance status (PS) ≥3. Propensity scores were derived with chemotherapy (LD5FU vs. 5FU+CDDP) as the dependent variable. RESULTS: In a multivariate analysis, chemotherapy (LD5FU vs. SDFP, p = .24; LDFP vs. SDFP, p = .52) did not affect the overall survival (OS). LD5FU caused significantly less grade 3-4 leukopenia (9%) compared to SDFP (47%) and LDFP (44%) (p < .001). In a propensity-matched analysis, LD5FU affected neither OS (HR 1.06; 95%CI 0.55-2.05; p = .87) nor progression-free survival (HR 0.95, 95%CI 0.50-1.81; p = .87). CONCLUSION: CRT with low-dose continuous 5FU may be a less toxic option for elderly ESCC patients.

17.
Jpn J Radiol ; 35(3): 95-100, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28160228

RESUMO

PURPOSE: To investigate the effects of a respiratory gating and multifield technique on the dose-volume histogram (DVH) in radiotherapy for esophageal cancer. METHODS AND MATERIALS: Twenty patients who underwent four-dimensional computed tomography for esophageal cancer were included. We retrospectively created the four treatment plans for each patient, with or without the respiratory gating and multifield technique: No gating-2-field, No gating-4-field, Gating-2-field, and Gating-4-field plans. We compared the DVH parameters of the lung and heart in the No gating-2-field plan with the other three plans. RESULT: In the comparison of the parameters in the No gating-2-field plan, there are significant differences in the Lung V5Gy, V20Gy, mean dose with all three plans and the Heart V25Gy-V40Gy with Gating-2-field plan, V35Gy, V40Gy, mean dose with No Gating-4-field plan and V30Gy-V40Gy, and mean dose with Gating-4-field plan. The lung parameters were smaller in the Gating-2-field plan and larger in the No gating-4-field and Gating-4-field plans. The heart parameters were all larger in the No gating-2-field plan. CONCLUSION: The lung parameters were reduced by the respiratory gating technique and increased by the multifield technique. The heart parameters were reduced by both techniques. It is important to select the optimal technique according to the risk of complications.


Assuntos
Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/radioterapia , Técnicas de Imagem de Sincronização Respiratória/métodos , Idoso , Idoso de 80 Anos ou mais , Neoplasias Esofágicas/fisiopatologia , Feminino , Tomografia Computadorizada Quadridimensional/métodos , Coração/fisiopatologia , Coração/efeitos da radiação , Humanos , Pulmão/fisiopatologia , Pulmão/efeitos da radiação , Masculino , Pessoa de Meia-Idade , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos
18.
J Radiat Res ; 57(3): 280-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26983988

RESUMO

We investigated the outcomes of treatment for patients with localized prostate cancer (PCa) treated with 3D conformal radiation therapy (3D-CRT) followed by two-fraction high-dose-rate brachytherapy within a single day (2-fr.-HDR-BT/day) at a single institution. A total of 156 consecutive Asian males (median age, 67 years) were enrolled. To compare our findings with those of other studies, we analyzed our results using the D'Amico classification, assigning the patients to low- ( N =: 5; 3.2%), intermediate- ( N =: 36; 23.1%) and high-risk ( N =: 115; 73.7%) groups (Stage T3 PCa patients were classified as high-risk). One patient in the D'Amico low-risk group (20%), 13 intermediate-risk patients (36.1%) and 99 high-risk patients (86.1%) underwent androgen deprivation therapy. We administered a prescription dose of 39 Gy in 13 fractions of 3D-CRT combined with 18 Gy of HDR-BT in two 9-Gy fractions delivered within a single day. We did not distinguish between risk groups in determining the prescription dose. The median follow-up period was 38 months. Of the 156 patients, one died from primary disease and five died from other diseases. The 3-year overall survival (OS) rates were 100%, 100% and 93.7%, and the 3-year 'biochemical no evidence of disease (bNED)' rates were 100%, 100% and 96.9% for the D'Amico low-, intermediate- and high-risk groups, respectively. No patient developed ≥ Grade 3 early toxicity. The Grade 3 late genitourinary toxicity rate was 2.6%, and no ≥ Grade 3 late gastrointestinal toxicity occurred. The efficacy and safety of this study were satisfactory, and longer-term follow-up is necessary.


Assuntos
Braquiterapia/métodos , Fracionamento da Dose de Radiação , Neoplasias da Próstata/radioterapia , Idoso , Braquiterapia/efeitos adversos , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Resultado do Tratamento
19.
Med Phys ; 42(3): 1378-88, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25735292

RESUMO

PURPOSE: To achieve accurate tissue inhomogeneity corrections in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted computed tomography (CT) number to an electron density (ΔHU-ρ(e) conversion), which provides a single linear relationship between ΔHU and ρ(e) over a wide range of ρ(e). The purpose of this study is to present an initial implementation of the ΔHU-ρ(e) conversion method for a treatment planning system (TPS). In this paper, two example radiotherapy plans are used to evaluate the reliability of dose calculations in the ΔHU-ρ(e) conversion method. METHODS: CT images were acquired using a clinical dual-source CT (DSCT) scanner operated in the dual-energy mode with two tube potential pairs and an additional tin (Sn) filter for the high-kV tube (80-140 kV/Sn and 100-140 kV/Sn). Single-energy CT using the same DSCT scanner was also performed at 120 kV to compare the ΔHU-ρ(e) conversion method with a conventional conversion from a CT number to ρ(e) (Hounsfield units, HU-ρ(e) conversion). Lookup tables for ρ(e) calibration were obtained from the CT image acquisitions for tissue substitutes in an electron density phantom (EDP). To investigate the beam-hardening effect on dosimetric uncertainties, two EDPs with different sizes (a body EDP and a head EDP) were used for the ρ(e) calibration. Each acquired lookup table was applied to two radiotherapy plans designed using the XiO TPS with the superposition algorithm for an anthropomorphic phantom. The first radiotherapy plan was for an oral cavity tumor and the second was for a lung tumor. RESULTS: In both treatment plans, the performance of the ΔHU-ρ(e) conversion was superior to that of the conventional HU-ρ(e) conversion in terms of the reliability of dose calculations. Especially, for the oral tumor plan, which dealt with dentition and bony structures, treatment planning with the HU-ρ(e) conversion exhibited apparent discrepancies between the dose distributions and dose-volume histograms (DVHs) of the body-EDP and head-EDP calibrations. In contrast, the dose distributions and DVHs of the body-EDP and head-EDP calibrations coincided with each other almost perfectly in the ΔHU-ρ(e) conversion for 100-140 kV/Sn. The difference between the V100's (the mean planning target volume receiving 100% of the prescribed dose; a DVH parameter) of the body-EDP and head-EDP calibrations could be reduced to less than 1% using the ΔHU-ρ(e) conversion, but exceeded 11% for the HU-ρ(e) conversion. CONCLUSIONS: The ΔHU-ρ(e) conversion can be implemented for currently available TPS's without any modifications or extensions. The ΔHU-ρ(e) conversion appears to be a promising method for providing an accurate and reliable inhomogeneity correction in treatment planning for any ill-conditioned scans that include (i) the use of a calibration EDP that is nonequivalent to the patient's body tissues, (ii) a mismatch between the size of the patient and the calibration EDP, or (iii) a large quantity of high-density and high-atomic-number tissue structures.


Assuntos
Elétrons , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/instrumentação , Tomografia Computadorizada por Raios X/instrumentação , Calibragem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/radioterapia , Dosagem Radioterapêutica
20.
Radiat Oncol ; 10: 31, 2015 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-25636830

RESUMO

BACKGROUND: To evaluate the risks and benefits of endoscopic submucosal dissection (ESD) in addition to chemoradiotherapy (CRT) for the treatment of superficial esophageal squamous cell carcinoma (SESCC). METHODS AND MATERIALS: We retrospectively reviewed the treatment outcomes of 47 patients with SESCC treated between October 2000 and December 2011. Sixteen patients with invasion into the submucosal layer (T1b) or the muscularis mucosa (m3) with positive vascular invasion were treated with CRT after ESD (ESD-CRT group). The lymph node area was irradiated to a total dose of 40-44 Gy and a boost radiation was administered if PET-positive lymph nodes or positive margins were observed. The remaining 31 patients received definitive CRT only (dCRT group). RESULTS: The radiation field was significantly larger in the ESD-CRT group; the "long T" was used in 11 patients (35.4%) in the dCRT group and 15 (93.7%) in the ESD-CRT group (p = 0.0001). The total radiation dose was smaller in the ESD-CRT group; 40 Gy was used in 10 patients (62.5%) in the ESD-CRT group and all but one patient in the dCRT group received ≥60 Gy (p = 0.00001). The 3-year overall survival rates in the dCRT and ESD-CRT groups were 63.2% and 90.0% respectively (p = 0.118). Recurrence developed in nine patients (29.0%) in the dCRT group and one (6.3%) in the ESD-CRT group. Local recurrence was observed in six patients (19%) in the dCRT group and none in the ESD-CRT-group (p = 0.029). Pericardial effusion (≥Grade 3) occurred in three patients (9.7%) in the dCRT group and none in the ESD-CRT group. CONCLUSIONS: ESD followed by CRT is an effective and safe approach for SESCC at m3 or T1b. This combination of ESD and CRT improves the local control rate, and it could decrease the number of cardiac toxicities due to a radiation-dose reduction relative to CRT alone.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células Escamosas/terapia , Neoplasias Esofágicas/terapia , Esofagectomia , Esofagoscopia/métodos , Mucosa/cirurgia , Recidiva Local de Neoplasia/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Terapia Combinada , Dissecação , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Prognóstico , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Estudos Retrospectivos , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...