Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 9: 635509, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869152

RESUMO

The non-proteinogenic amino acid 5-amino valeric acid (5-AVA) and the diamine putrescine are potential building blocks in the bio-polyamide industry. The production of 5-AVA and putrescine using engineered Corynebacterium glutamicum by the co-consumption of biomass-derived sugars is an attractive strategy and an alternative to their petrochemical synthesis. In our previous work, 5-AVA production from pure xylose by C. glutamicum was shown by heterologously expressing xylA from Xanthomonas campestris and xylB from C. glutamicum. Apart from this AVA Xyl culture, the heterologous expression of xylA Xc and xylB Cg was also carried out in a putrescine producing C. glutamicum to engineer a PUT Xyl strain. Even though, the pure glucose (40 g L-1) gave the maximum product yield by both the strains, the utilization of varying combinations of pure xylose and glucose by AVA Xyl and PUT Xyl in CGXII synthetic medium was initially validated. A blend of 25 g L-1 of glucose and 15 g L-1 of xylose in CGXII medium yielded 109 ± 2 mg L-1 putrescine and 874 ± 1 mg L-1 5-AVA after 72 h of fermentation. Subsequently, to demonstrate the utilization of biomass-derived sugars, the alkali (NaOH) pretreated-enzyme hydrolyzed rice straw containing a mixture of glucose (23.7 g L-1) and xylose (13.6 g L-1) was fermented by PUT Xyl and AVA Xyl to yield 91 ± 3 mg L-1 putrescine and 260 ± 2 mg L-1 5-AVA, respectively, after 72 h of fermentation. To the best of our knowledge, this is the first proof of concept report on the production of 5-AVA and putrescine using rice straw hydrolysate (RSH) as the raw material.

2.
Geohealth ; 4(12): e2020GH000305, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344871

RESUMO

Coronavirus Disease 2019 (COVID-19) pandemic poses extreme threat to public health and economy, particularly to the nations with higher population density. The disease first reported in Wuhan, China; later, it spreads elsewhere, and currently, India emerged as COVID-19 hotspot. In India, we selected 20 densely populated cities having infection counts higher than 500 (by 15 May) as COVID-19 epicenters. Daily COVID-19 count has strong covariability with local temperature, which accounts approximately 65-85% of the explained variance; i.e., its spread depends strongly on local temperature rise prior to community transmission phase. The COVID-19 cases are clustered at temperature and humidity ranging within 27-32°C and 25-45%, respectively. We introduce a combined temperature and humidity profile, which favors rapid COVID-19 growth at the initial phase. The results are highly significant for predicting future COVID-19 outbreaks and modeling cities based on environmental conditions. On the other hand, CO2 emission is alarmingly high in South Asia (India) and entails high risk of climate change and extreme hot summer. Zoonotic viruses are sensitive to warming induced climate change; COVID-19 epicenters are collocated on CO2 emission hotspots. The COVID-19 count distribution peaks at 31.0°C, which is 1.0°C higher than current (2020) and historical (1961-1990) mean, value. Approximately, 72% of the COVID-19 cases are clustered at severe to record-breaking hot extremes of historical temperature distribution spectrum. Therefore, extreme climate change has important role in the spread of COVID-19 pandemic. Hence, a strenuous mitigation measure to abate greenhouse gas (GHG) emission is essential to avoid such pandemics in future.

3.
AMB Express ; 10(1): 68, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32296988

RESUMO

In bacterial system, direct conversion of xylose to xylonic acid is mediated through NAD-dependent xylose dehydrogenase (xylB) and xylonolactonase (xylC) genes. Heterologous expression of these genes from Caulobacter crescentus into recombinant Corynebacterium glutamicum ATCC 13032 and C. glutamicum ATCC 31831 (with an innate pentose transporter, araE) resulted in an efficient bioconversion process to produce xylonic acid from xylose. Process parameters including the design of production medium was optimized using a statistical tool, Response Surface Methodology (RSM). Maximum xylonic acid of 56.32 g/L from 60 g/L xylose, i.e. about 76.67% of the maximum theoretical yield was obtained after 120 h fermentation from pure xylose with recombinant C. glutamicum ATCC 31831 containing the plasmid pVWEx1 xylB. Under the same condition, the production with recombinant C. glutamicum ATCC 13032 (with pVWEx1 xylB) was 50.66 g/L, i.e. 69% of the theoretical yield. There was no significant improvement in production with the simultaneous expression of xylB and xylC genes together indicating xylose dehydrogenase activity as one of the rate limiting factor in the bioconversion. Finally, proof of concept experiment in utilizing biomass derived pentose sugar, xylose, for xylonic acid production was also carried out and obtained 42.94 g/L xylonic acid from 60 g/L xylose. These results promise a significant value addition for the future bio refinery programs.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31616665

RESUMO

Sarcosine, an N-methylated amino acid, shows potential as antipsychotic, and serves as building block for peptide-based drugs, and acts as detergent when acetylated. N-methylated amino acids are mainly produced chemically or by biocatalysis, with either low yields or high costs for co-factor regeneration. Corynebacterium glutamicum, which is used for the industrial production of amino acids for decades, has recently been engineered for production of N-methyl-L-alanine and sarcosine. Heterologous expression of dpkA in a C. glutamicum strain engineered for glyoxylate overproduction enabled fermentative production of sarcosine from sugars and monomethylamine. Here, mutation of an amino acyl residue in the substrate binding site of DpkA (DpkAF117L) led to an increased specific activity for reductive alkylamination of glyoxylate using monomethylamine and monoethylamine as substrates. Introduction of DpkAF117L into the production strain accelerated the production of sarcosine and a volumetric productivity of 0.16 g L-1 h-1 could be attained. Using monoethylamine as substrate, we demonstrated N-ethylglycine production with a volumetric productivity of 0.11 g L-1 h-1, which to the best of our knowledge is the first report of its fermentative production. Subsequently, the feasibility of using rice straw hydrolysate as alternative carbon source was tested and production of N-ethylglycine to a titer of 1.6 g L-1 after 60 h of fed-batch bioreactor cultivation could be attained.

5.
Bioresour Technol ; 241: 1152-1156, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28579175

RESUMO

A high molecular weight EPS of glucomannan nature was recovered and purified to get an yield of 2.8±0.5g/L from Lb. plantarum BR2 and it displayed potent antioxidant activity with 29.8% radical scavenging activity and 19% total antioxidant capacity. At 100µg/ml concentration, it is capable of inhibiting the alpha amylase activity by 10% and at 300µg/ml, it drastically inhibited the alpha-glucosidase activity by 67% which indicates its antidiabetic potential. More interestingly, at a concentration level of 0.1%, it reduced the cholesterol level by a margin of 45% in an in vitro assay. The sample didn't reveal any cytotoxicity against H9C2 normal cells indicating its potential for safe use as a food additive.


Assuntos
Alimento Funcional , Lactobacillus plantarum , Antioxidantes , Oxirredução , alfa-Glucosidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...