Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722238

RESUMO

Animals encounter diverse microbial communities throughout their lifetime, which exert varying selection pressures. Antimicrobial peptides (AMPs), which lyse or inhibit microbial growth, are a first line of defense against some of these microbes. Here we examine how developmental variation in microbial exposure has affected the evolution of expression and amino acid sequences of Defensins (an ancient class of AMPs) in the house fly (Musca domestica). The house fly is a well-suited model for this work because it trophically associates with varying microbial communities throughout its life history and its genome contains expanded families of AMPs, including Defensins. We identified two subsets of house fly Defensins: one expressed in larvae or pupae, and the other expressed in adults. The amino acid sequences of these two Defensin subsets form distinct monophyletic clades, and they are located in separate gene clusters in the genome. The adult-expressed Defensins evolve faster than larval/pupal Defensins, consistent with different selection pressures across developmental stages. Our results therefore suggest that varied microbial communities encountered across life history can shape the evolutionary trajectories of immune genes.

2.
Nat Plants ; 10(6): 1039-1051, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38816498

RESUMO

Cotton (Gossypium hirsutum L.) is the key renewable fibre crop worldwide, yet its yield and fibre quality show high variability due to genotype-specific traits and complex interactions among cultivars, management practices and environmental factors. Modern breeding practices may limit future yield gains due to a narrow founding gene pool. Precision breeding and biotechnological approaches offer potential solutions, contingent on accurate cultivar-specific data. Here we address this need by generating high-quality reference genomes for three modern cotton cultivars ('UGA230', 'UA48' and 'CSX8308') and updating the 'TM-1' cotton genetic standard reference. Despite hypothesized genetic uniformity, considerable sequence and structural variation was observed among the four genomes, which overlap with ancient and ongoing genomic introgressions from 'Pima' cotton, gene regulatory mechanisms and phenotypic trait divergence. Differentially expressed genes across fibre development correlate with fibre production, potentially contributing to the distinctive fibre quality traits observed in modern cotton cultivars. These genomes and comparative analyses provide a valuable foundation for future genetic endeavours to enhance global cotton yield and sustainability.


Assuntos
Genoma de Planta , Gossypium , Melhoramento Vegetal , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Fibra de Algodão , Variação Genética , Fenótipo
3.
Genes (Basel) ; 15(1)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38254960

RESUMO

Organic matter (OM) amendments are often encouraged in sustainable agriculture programs but can create heterogeneous soil environments when applied to perennial crops such as peaches (Prunus persica (L.) Batsch). To better understand the responses of peach roots to non-uniform soil conditions, transcriptomic analysis was performed in a split-root study using uniform soil (the same soil type for all roots) or non-uniform soil (different soil types for each half of the root system) from either (1) autoclaved sand (S), (2) autoclaved sand with autoclaved compost (A), or (3) autoclaved sand with compost which included inherent biological soil life (B). Each uniform soil type (S, A, and B) was grouped and compared by uniform and non-uniform soil comparisons for a total of nine treatments. Comparisons revealed peach roots had differentially expressed genes (DEGs) and gene ontology terms between soil groups, with the S and B groups having a range of 106-411 DEGs and the A group having a range of 19-94 DEGs. Additionally, six modules were identified and correlated (p > 0.69) for six of the nine treatment combinations. This study broadly highlights the complexity of how OM and biological life in the rhizosphere interact with immediate and distant roots and sheds light on how non-homogenous soil conditions can influence peach root gene expression.


Assuntos
Prunus persica , Solo , Prunus persica/genética , Areia , Agricultura , Expressão Gênica
4.
Methods Protoc ; 6(5)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37888024

RESUMO

Recent advances in phenotyping techniques have substantially improved the ability to mitigate type-II errors typically associated with high variance in phenotyping data sets. In particular, the implementation of automated techniques such as the High-Volume Instrument (HVI) and the Advanced Fiber Information System (AFIS) have significantly enhanced the reproducibility and standardization of various fiber quality measurements in cotton. However, micronaire is not a direct measure of either maturity or fineness, lending to limitations. AFIS only provides a calculated form of fiber diameter, not a direct measure, justifying the need for a visual-based reference method. Obtaining direct measurements of individual fibers through cross-sectional analysis and electron microscopy is a widely accepted standard but is time-consuming and requires the use of hazardous chemicals and specialized equipment. In this study, we present a simplified fiber histology and image acquisition technique that is both rapid and reproducible. We also introduce an automated image analysis program that utilizes machine learning to differentiate good fibers from bad and to subsequently collect critical phenotypic measurements. These methods have the potential to improve the efficiency of cotton fiber phenotyping, allowing for greater precision in unravelling the genetic architecture of critical traits such as fiber diameter, shape, areas of the secondary cell wall/lumen, and others, ultimately leading to larger genetic gains in fiber quality and improvements in cotton.

5.
Genes (Basel) ; 14(10)2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37895254

RESUMO

Alopecurus myosuroides (blackgrass) is a problematic weed of Western European winter wheat, and its success is largely due to widespread multiple-herbicide resistance. Previous analysis of F2 seed families derived from two distinct blackgrass populations exhibiting equivalent non-target site resistance (NTSR) phenotypes shows resistance is polygenic and evolves from standing genetic variation. Using a CIDER-seq pipeline, we show that herbicide-resistant (HR) and herbicide-sensitive (HS) F3 plants from these F2 seed families as well as the parent populations they were derived from carry extra-chromosomal circular DNA (eccDNA). We identify the similarities and differences in the coding structures within and between resistant and sensitive populations. Although the numbers and size of detected eccDNAs varied between the populations, comparisons between the HR and HS blackgrass populations identified shared and unique coding content, predicted genes, and functional protein domains. These include genes related to herbicide detoxification such as Cytochrome P450s, ATP-binding cassette transporters, and glutathione transferases including AmGSTF1. eccDNA content was mapped to the A. myosuroides reference genome, revealing genomic regions at the distal end of chromosome 5 and the near center of chromosomes 1 and 7 as regions with a high number of mapped eccDNA gene density. Mapping to 15 known herbicide-resistant QTL regions showed that the eccDNA coding sequences matched twelve, with four QTL matching HS coding sequences; only one region contained HR coding sequences. These findings establish that, like other pernicious weeds, blackgrass has eccDNAs that contain homologs of chromosomal genes, and these may contribute genetic heterogeneity and evolutionary innovation to rapidly adapt to abiotic stresses, including herbicide treatment.


Assuntos
DNA Circular , Herbicidas , Humanos , Poaceae/genética , Poaceae/metabolismo , Triticum/genética , Cromossomos , Herbicidas/farmacologia
6.
Genes (Basel) ; 14(8)2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37628627

RESUMO

The accumulation of metabolic wastes in cell cultures can diminish product quality, reduce productivity, and trigger apoptosis. The limitation or removal of unintended waste products from Chinese hamster ovary (CHO) cell cultures has been attempted through multiple process and genetic engineering avenues with varied levels of success. One study demonstrated a simple method to reduce lactate and ammonia production in CHO cells with adaptation to extracellular lactate; however, the mechanism behind adaptation was not certain. To address this profound gap, this study characterizes the phenotype of a recombinant CHO K-1 cell line that was gradually adapted to moderate and high levels of extracellular lactate and examines the genomic content and role of extrachromosomal circular DNA (eccDNA) and gene expression on the adaptation process. More than 500 genes were observed on eccDNAs. Notably, more than 1000 genes were observed to be differentially expressed at different levels of lactate adaptation, while only 137 genes were found to be differentially expressed between unadapted cells and cells adapted to grow in high levels of lactate; this suggests stochastic switching as a potential stress adaptation mechanism in CHO cells. Further, these data suggest alanine biosynthesis as a potential stress-mitigation mechanism for excess lactate in CHO cells.


Assuntos
Aminoácidos , Ácido Láctico , Animais , Cricetinae , Cricetulus , Células CHO , Expressão Gênica
7.
Plant Physiol ; 193(4): 2459-2479, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37595026

RESUMO

Source and sink interactions play a critical but mechanistically poorly understood role in the regulation of senescence. To disentangle the genetic and molecular mechanisms underlying source-sink-regulated senescence (SSRS), we performed a phenotypic, transcriptomic, and systems genetics analysis of senescence induced by the lack of a strong sink in maize (Zea mays). Comparative analysis of genotypes with contrasting SSRS phenotypes revealed that feedback inhibition of photosynthesis, a surge in reactive oxygen species, and the resulting endoplasmic reticulum (ER) stress were the earliest outcomes of weakened sink demand. Multienvironmental evaluation of a biparental population and a diversity panel identified 12 quantitative trait loci and 24 candidate genes, respectively, underlying SSRS. Combining the natural diversity and coexpression networks analyses identified 7 high-confidence candidate genes involved in proteolysis, photosynthesis, stress response, and protein folding. The role of a cathepsin B like protease 4 (ccp4), a candidate gene supported by systems genetic analysis, was validated by analysis of natural alleles in maize and heterologous analyses in Arabidopsis (Arabidopsis thaliana). Analysis of natural alleles suggested that a 700-bp polymorphic promoter region harboring multiple ABA-responsive elements is responsible for differential transcriptional regulation of ccp4 by ABA and the resulting variation in SSRS phenotype. We propose a model for SSRS wherein feedback inhibition of photosynthesis, ABA signaling, and oxidative stress converge to induce ER stress manifested as programed cell death and senescence. These findings provide a deeper understanding of signals emerging from loss of sink strength and offer opportunities to modify these signals to alter senescence program and enhance crop productivity.


Assuntos
Transcriptoma , Zea mays , Zea mays/metabolismo , Transcriptoma/genética , Perfilação da Expressão Gênica , Fotossíntese/genética , Fenótipo , Regulação da Expressão Gênica de Plantas
8.
Curr Protoc ; 3(7): e844, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37486164

RESUMO

To study the transcriptome of individual plant cells at specific points in time, we developed protocols for fixation, embedding, and sectioning of plant tissue followed by laser capture microdissection (LCM) and processing for RNA recovery. LCM allows the isolation of individual cell types from heterogeneous tissue sections and is particularly suited to plant processing because it does not require the breakdown of cell walls. This approach allows accurate separation of a small volume of cells that can be used to study gene expression profiles in different tissues or cell layers. The technique requires neither separation of cells by enzymatic digestion of any kind nor cell-specific reporter genes, and it allows storage of fixed and embedded tissue for months before capture. The methods for fixation, embedding, sectioning, and capturing of plant cells that we describe yield high-quality RNA suitable for making libraries for RNASeq. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Tissue Preparation for Laser Capture Microdissection Basic Protocol 2: Tissue Sectioning Basic Protocol 3: Laser Capture Microdissection of Embedded Tissue Basic Protocol 4: RNA Extraction from Laser Capture Microdissection Samples.


Assuntos
Plantas , RNA , Microdissecção e Captura a Laser/métodos , RNA/genética , Plantas/genética , Transcriptoma , Inclusão em Parafina
9.
Front Plant Sci ; 14: 1181153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332708

RESUMO

Armillaria root rot (ARR) poses a significant threat to the long-term productivity of stone-fruit and nut crops in the predominant production area of the United States. To mitigate this issue, the development of ARR-resistant and horticulturally-acceptable rootstocks is a crucial step towards the maintenance of production sustainability. To date, genetic resistance to ARR has been found in exotic plum germplasm and a peach/plum hybrid rootstock, 'MP-29'. However, the widely-used peach rootstock Guardian® is susceptible to the pathogen. To understand the molecular defense mechanisms involved in ARR resistance in Prunus rootstocks, transcriptomic analyses of one susceptible and two resistant Prunus spp. were performed using two causal agents of ARR, including Armillaria mellea and Desarmillaria tabescens. The results of in vitro co-culture experiments revealed that the two resistant genotypes showed different temporal response dynamics and fungus-specific responses, as seen in the genetic response. Gene expression analysis over time indicated an enrichment of defense-related ontologies, including glucosyltransferase activity, monooxygenase activity, glutathione transferase activity, and peroxidase activity. Differential gene expression and co-expression network analysis highlighted key hub genes involved in the sensing and enzymatic degradation of chitin, GSTs, oxidoreductases, transcription factors, and biochemical pathways likely involved in Armillaria resistance. These data provide valuable resources for the improvement of ARR resistance in Prunus rootstocks through breeding.

10.
Sci Rep ; 13(1): 1200, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681715

RESUMO

Chinese hamster ovary (CHO) cell lines are widely used to manufacture biopharmaceuticals. However, CHO cells are not an optimal expression host due to the intrinsic plasticity of the CHO genome. Genome plasticity can lead to chromosomal rearrangements, transgene exclusion, and phenotypic drift. A poorly understood genomic element of CHO cell line instability is extrachromosomal circular DNA (eccDNA) in gene expression and regulation. EccDNA can facilitate ultra-high gene expression and are found within many eukaryotes including humans, yeast, and plants. EccDNA confers genetic heterogeneity, providing selective advantages to individual cells in response to dynamic environments. In CHO cell cultures, maintaining genetic homogeneity is critical to ensuring consistent productivity and product quality. Understanding eccDNA structure, function, and microevolutionary dynamics under various culture conditions could reveal potential engineering targets for cell line optimization. In this study, eccDNA sequences were investigated at the beginning and end of two-week fed-batch cultures in an ambr®250 bioreactor under control and lactate-stressed conditions. This work characterized structure and function of eccDNA in a CHO-K1 clone. Gene annotation identified 1551 unique eccDNA genes including cancer driver genes and genes involved in protein production. Furthermore, RNA-seq data is integrated to identify transcriptionally active eccDNA genes.


Assuntos
Técnicas de Cultura Celular por Lotes , Ácido Láctico , Cricetinae , Animais , Humanos , Cricetulus , Células CHO , Genoma , DNA
11.
New Phytol ; 237(5): 1891-1907, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36457293

RESUMO

Globally, weedy plants are a major constraint to sustainable crop production. Much of the success of weeds rests with their ability to rapidly adapt in the face of human-mediated management of agroecosystems. Alopecurus myosuroides (blackgrass) is a widespread and impactful weed affecting agriculture in Europe. Here we report a chromosome-scale genome assembly of blackgrass and use this reference genome to explore the genomic/genetic basis of non-target site herbicide resistance (NTSR). Based on our analysis of F2 seed families derived from two distinct blackgrass populations with the same NTSR phenotype, we demonstrate that the trait is polygenic and evolves from standing genetic variation. We present evidence that selection for NTSR has signatures of both parallel and non-parallel evolution. There are parallel and non-parallel changes at the transcriptional level of several stress- and defence-responsive gene families. At the genomic level, however, the genetic loci underpinning NTSR are different (non-parallel) between seed families. We speculate that variation in the number, regulation and function of stress- and defence-related gene families enable weedy species to rapidly evolve NTSR via exaptation of genes within large multi-functional gene families. These results provide novel insights into the potential for, and nature of plant adaptation in rapidly changing environments.


Assuntos
Herbicidas , Humanos , Herbicidas/toxicidade , Resistência a Herbicidas/genética , Plantas Daninhas/genética , Poaceae/genética , Genômica
12.
Front Plant Sci ; 14: 1320638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38356867

RESUMO

Introduction: Plants can adapt their growth to optimize light capture in competitive environments, with branch angle being a crucial factor influencing plant phenotype and physiology. Decreased branch angles in cereal crops have been shown to enhance productivity in high-density plantings. The Tiller Angle Control (TAC1) gene, known for regulating tiller inclination in rice and corn, has been found to control branch angle in eudicots. Manipulating TAC1 in field crops like cotton offers the potential for improving crop productivity. Methods: Using a homolog-based methodology, we examined the distribution of TAC1-related genes in cotton compared to other angiosperms. Furthermore, tissue-specific qPCR analysis unveiled distinct expression patterns of TAC1 genes in various cotton tissues. To silence highly expressed specific TAC1 homeologs in the stem, we applied CRISPR-Cas9 gene editing and Agrobacterium-mediated transformation, followed by genotyping and subsequent phenotypic validation of the mutants. Results: Gene duplication events of TAC1 specific to the Gossypium lineage were identified, with 3 copies in diploid progenitors and 6 copies in allotetraploid cottons. Sequence analysis of the TAC1 homeologs in Gossypium hirsutum revealed divergence from other angiosperms with 1-2 copies, suggesting possible neo- or sub-functionalization for the duplicated copies. These TAC1 homeologs exhibited distinct gene expression patterns in various tissues over developmental time, with elevated expression of A11G109300 and D11G112200, specifically in flowers and stems, respectively. CRISPR-mediated loss of these TAC1 homeologous genes resulted in a reduction in branch angle and altered petiole angles, and a 5 to 10-fold reduction in TAC1 expression in the mutants, confirming their role in controlling branch and petiole angles. This research provides a promising strategy for genetically engineering branch and petiole angles in commercial cotton varieties, potentially leading to increased productivity.

13.
Plants (Basel) ; 11(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36235335

RESUMO

Bud dormancy is a genotype-dependent mechanism observed in Prunus species in which bud growth is inhibited, and the accumulation of a specific amount of chilling (endodormancy) and heat (ecodormancy) is necessary to resume growth and reach flowering. We analyzed publicly available transcriptome data from fifteen cultivars of four Prunus species (almond, apricot, peach, and sweet cherry) sampled at endo- and ecodormancy points to identify conserved genes and pathways associated with dormancy control in the genus. A total of 13,018 genes were differentially expressed during dormancy transitions, of which 139 and 223 were of interest because their expression profiles correlated with endo- and ecodormancy, respectively, in at least one cultivar of each species. The endodormancy-related genes comprised transcripts mainly overexpressed during chilling accumulation and were associated with abiotic stresses, cell wall modifications, and hormone regulation. The ecodormancy-related genes, upregulated after chilling fulfillment, were primarily involved in the genetic control of carbohydrate regulation, hormone biosynthesis, and pollen development. Additionally, the integrated co-expression network of differentially expressed genes in the four species showed clusters of co-expressed genes correlated to dormancy stages and genes of breeding interest overlapping with quantitative trait loci for bloom time and chilling and heat requirements.

14.
PLoS One ; 17(9): e0260906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36103503

RESUMO

The discovery of non-chromosomal circular DNA offers new directions in linking genome structure with function in plant biology. Glyphosate resistance through EPSPS gene copy amplification in Palmer amaranth was due to an autonomously replicating extra-chromosomal circular DNA mechanism (eccDNA). CIDER-Seq analysis of geographically distant glyphosate sensitive (GS) and resistant (GR) Palmer Amaranth (Amaranthus palmeri) revealed the presence of numerous small extra-chromosomal circular DNAs varying in size and with degrees of repetitive content, coding sequence, and motifs associated with autonomous replication. In GS biotypes, only a small portion of these aligned to the 399 kb eccDNA replicon, the vehicle underlying gene amplification and genetic resistance to the herbicide glyphosate. The aligned eccDNAs from GS were separated from one another by large gaps in sequence. In GR biotypes, the eccDNAs were present in both abundance and diversity to assemble into a nearly complete eccDNA replicon. Mean sizes of eccDNAs were similar in both biotypes and were around 5kb with larger eccDNAs near 25kb. Gene content for eccDNAs ranged from 0 to 3 with functions that include ribosomal proteins, transport, metabolism, and general stress response genetic elements. Repeat content among smaller eccDNAs indicate a potential for recombination into larger structures. Genomic hotspots were also identified in the Palmer amaranth genome with a disposition for gene focal amplifications as eccDNA. The presence of eccDNA may serve as a reservoir of genetic heterogeneity in this species and may be functionally important for survival.


Assuntos
Amaranthus , Herbicidas , Corante Amaranto , Amaranthus/genética , DNA Circular , Glicina/análogos & derivados , Glicina/genética , Glicina/farmacologia , Herbicidas/farmacologia , Glifosato
15.
Insect Mol Biol ; 31(6): 782-797, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35875866

RESUMO

Insects possess both infection-induced and constitutively expressed innate immune defences. Some effectors, such as lysozymes and antimicrobial peptides (AMPs), are constitutively expressed in flies, but expression patterns vary across tissues and species. The house fly (Musca domestica L.) has an impressive immune repertoire, with more effector genes than any other flies. We used RNA-seq to explore both constitutive and induced expression of immune effectors in flies. House flies were fed either Pseudomonas aeruginosa or Escherichia coli, or sterile control broth, and gene expression in the gut and carcass was analysed 4 h post-feeding. Flies fed either bacterium did not induce AMP expression, but some lysozyme and AMP genes were constitutively expressed. Prior transcriptome data from flies injected with bacteria also were analysed, and these constitutively expressed genes differed from those induced by bacterial injection. Binding sites for the transcription factor Myc were enriched upstream of constitutively expressed AMP genes, while upstream regions of induced AMPs were enriched for NF-κB binding sites resembling those of the Imd-responsive transcription factor Relish. Therefore, we identified at least two expression repertoires for AMPs in the house fly: constitutively expressed genes that may be regulated by Myc, and induced AMPs likely regulated by Relish.


Assuntos
Moscas Domésticas , Animais , Bactérias , Regulação da Expressão Gênica , Moscas Domésticas/genética , Pseudomonas aeruginosa , Fatores de Transcrição/genética
16.
Front Plant Sci ; 13: 872208, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712560

RESUMO

Linkage maps are highly appreciated tools for cultivar and rootstock breeding programs because they are suitable for genetic and genomic studies. In this study, we report on using sequence-based genotyping (SBG) approach to simultaneously discover and genotype SNPs from two peach-based rootstocks ("Adafuel" and "Flordaguard") and their progeny (n = 118): from a initial mapping population composed of 131 seedlings. The plant material was developed at the EEAD-CSIC Prunus rootstocks breeding program, aiming to obtain a segregating progeny for a range of characters of agronomical interest to rootstock breeding (iron-chlorosis and root-asphyxia tolerance, nematode resistance, vigor traits, and other effects on scion cultivars). Sequence reads obtained from double-digest SBG were aligned to the P. persica reference genome (Peach v2.0). While eight linkage groups were constructed for "Adafuel," only four linkage groups were constructed for "Flordaguard," given the low heterozygosity of this last genotype. High synteny and co-linearity were observed between obtained maps and Peach v2.0. On the other hand, this work aimed to elucidate the genetic basis of leaf chlorosis tolerance using the phenotypic segregation of the progeny to iron-chlorosis tolerance, along with the QTLs responsible for leaf chlorosis. The F1 mapping population, composed initially of 131 seedlings, was growing in four field trials established on calcareous soils at the experimental field of the EEAD-CSIC in Zaragoza, Spain. From the initial mapping population, 131 individuals were selected for their phenotypical characterization with SPAD measurements of plants grown in the field, exhibiting a great variability. Significant QTLs associated with tolerance to iron chlorosis were found in LG1, LG5, LG7, and LG8. The significant QTLs detected in LG5 and LG7 have not been associated with this abiotic stress before in Prunus. Several candidate genes such as Prupe.1G541100, predicted as glutamyl-tRNA reductase 1, Prupe.1G468200, encoding a 2-oxoglutarate (2OG), and Fe(II)-dependent oxygenase superfamily protein or Prupe.1G577000 (ppa011050.m), a NIFU-like protein 2 (NIFU2) were detected. The exact biological function of some of these genes should be verified for the future development of marker-assisted selection for peach iron chlorosis tolerance.

17.
Genes (Basel) ; 13(3)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328069

RESUMO

Echinochloa colona and other species in this genus are a threat to global rice production and food security. Quinclorac, an auxin mimic, is a common herbicide for grass weed control in rice, and Echinochloa spp. have evolved resistance to it. The complete mode of quinclorac action and subsequent evolution of resistance is not fully understood. We analyzed the de novo transcriptome of multiple-herbicide-resistant (ECO-R) and herbicide-susceptible genotypes in response to quinclorac. Several biological processes were constitutively upregulated in ECO-R, including carbon metabolism, photosynthesis, and ureide metabolism, indicating improved metabolic efficiency. The transcriptional change in ECO-R following quinclorac treatment indicates an efficient response, with upregulation of trehalose biosynthesis, which is also known for abiotic stress mitigation. Detoxification-related genes were induced in ECO-R, mainly the UDP-glycosyltransferase (UGT) family, most likely enhancing quinclorac metabolism. The transcriptome data also revealed that many antioxidant defense elements were uniquely elevated in ECO-R to protect against the auxin-mediated oxidative stress. We propose that upon quinclorac treatment, ECO-R detoxifies quinclorac utilizing UGT genes, which modify quinclorac using the sufficient supply of UDP-glucose from the elevated trehalose pathway. Thus, we present the first report of upregulation of trehalose synthesis and its association with the herbicide detoxification pathway as an adaptive mechanism to herbicide stress in Echinochloa, resulting in high resistance.


Assuntos
Echinochloa , Herbicidas , Oryza , Echinochloa/genética , Echinochloa/metabolismo , Resistência a Herbicidas/genética , Herbicidas/metabolismo , Herbicidas/farmacologia , Ácidos Indolacéticos/metabolismo , Oryza/genética , Quinolinas , Transcriptoma , Trealose/metabolismo , Difosfato de Uridina/metabolismo , Xenobióticos/metabolismo
18.
PLoS One ; 17(2): e0264543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213640

RESUMO

Bacterial spot, caused by Xanthomonas arboricola pv. pruni (Xap), is a serious peach disease with symptoms that traverse severe defoliation and black surface pitting, cracking or blemishes on peach fruit with global economic impacts. A management option for control and meeting consumer demand for chemical-free, environmentally friendly fruit production is the development of resistant or tolerant cultivars. We developed simple, accurate, and efficient DNA assays (Ppe.XapF) based on SNP genotyping with KASP technology to quickly test for bacterial spot resistance alleles in peach fruit that allows breeders to cull seedlings at the greenhouse stage. The objective of this research was to validate newly developed DNA tests that target the two major QTLs for fruit resistance in peach with diagnostic utility in predicting fruit response to bacterial spot infection. Our study confirms that with only two Ppe.XapF DNA tests, Ppe.XapF1-1 and Ppe.XapF6-2, individuals carrying susceptible alleles can be identified. Use of these efficient and accurate Ppe.XapF KASP tests resulted in 44% reduction in seedling planting rate in the Clemson University peach breeding program.


Assuntos
Técnicas de Genotipagem/métodos , Doenças das Plantas/microbiologia , Prunus persica/genética , Xanthomonas/genética , Alelos , DNA Bacteriano/análise , DNA Bacteriano/genética , Resistência à Doença/genética , Frutas/genética , Frutas/metabolismo , Frutas/microbiologia , Ensaios de Triagem em Larga Escala , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Prunus persica/crescimento & desenvolvimento , Prunus persica/metabolismo , Prunus persica/microbiologia , Locos de Características Quantitativas , Xanthomonas/isolamento & purificação
19.
Plant Dis ; 106(3): 990-995, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34705484

RESUMO

Fusarium oxysporum f. sp. vasinfectum race 4 (FOV4) is a devastating fungus pathogen that causes Fusarium wilt in both domesticated cotton species, Gossypium hirsutum (Upland) and G. barbadense (Pima). Greenhouse and field-based pathogenicity assays can be a challenge because of nonuniform inoculum levels, the presence of endophytes, and varying environmental factors. Therefore, an in vitro coculture system was designed to support the growth of both domesticated cotton species and FOV4 via an inert polyphenolic foam substrate with a liquid medium. A Fusarium wilt-susceptible Pima cotton cultivar, G. barbadense 'GB1031'; a highly resistant Pima cotton cultivar, G. barbadense 'DP348RF'; and a susceptible Upland cotton cultivar, G. hirsutum 'TM-1', were evaluated for 30 days during coculture with FOV4 in this foam-based system. Thirty days after inoculation, disease symptoms were more severe in both susceptible cultivars, which displayed higher percentages of foliar damage, and greater plant mortality than observed in 'DP348RF', the resistant Pima cotton cultivar. This foam-based in vitro system may be useful for screening cotton germplasm for resistance to a variety of fungus pathogens and may facilitate the study of biotic interactions in domesticated cotton species under controlled environmental conditions.


Assuntos
Fusarium , Gossypium , Técnicas de Cocultura , Fusarium/fisiologia , Gossypium/microbiologia , Doenças das Plantas/microbiologia
20.
BMC Microbiol ; 21(1): 346, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911456

RESUMO

BACKGROUND: House fly larvae (Musca domestica L.) require a live microbial community to successfully develop. Cattle manure is rich in organic matter and microorganisms, comprising a suitable substrate for larvae who feed on both the decomposing manure and the prokaryotic and eukaryotic microbes therein. Microbial communities change as manure ages, and when fly larvae are present changes attributable to larval grazing also occur. Here, we used high throughput sequencing of 16S and 18S rRNA genes to characterize microbial communities in dairy cattle manure and evaluated the changes in those communities over time by comparing the communities in fresh manure to aged manure with or without house fly larvae. RESULTS: Bacteria, archaea and protist community compositions significantly differed across manure types (e.g. fresh, aged, larval-grazed). Irrespective of manure type, microbial communities were dominated by the following phyla: Euryarchaeota (Archaea); Proteobacteria, Firmicutes and Bacteroidetes (Bacteria); Ciliophora, Metamonanda, Ochrophyta, Apicomplexa, Discoba, Lobosa and Cercozoa (Protists). Larval grazing significantly reduced the abundances of Bacteroidetes, Ciliophora, Cercozoa and increased the abundances of Apicomplexa and Discoba. Manure aging alone significantly altered the abundance bacteria (Acinetobacter, Clostridium, Petrimonas, Succinovibro), protists (Buxtonella, Enteromonas) and archaea (Methanosphaera and Methanomassiliicoccus). Larval grazing also altered the abundance of several bacterial genera (Pseudomonas, Bacteroides, Flavobacterium, Taibaiella, Sphingopyxis, Sphingobacterium), protists (Oxytricha, Cercomonas, Colpodella, Parabodo) and archaea (Methanobrevibacter and Methanocorpusculum). Overall, larval grazing significantly reduced bacterial and archaeal diversities but increased protist diversity. Moreover, total carbon (TC) and nitrogen (TN) decreased in larval grazed manure, and both TC and TN were highly correlated with several of bacterial, archaeal and protist communities. CONCLUSIONS: House fly larval grazing altered the abundance and diversity of bacterial, archaeal and protist communities differently than manure aging alone. Fly larvae likely alter community composition by directly feeding on and eliminating microbes and by competing with predatory microbes for available nutrients and microbial prey. Our results lend insight into the role house fly larvae play in shaping manure microbial communities and help identify microbes that house fly larvae utilize as food sources in manure. Information extrapolated from this study can be used to develop manure management strategies to interfere with house fly development and reduce house fly populations.


Assuntos
Moscas Domésticas/metabolismo , Esterco/microbiologia , Microbiota , Animais , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Carbono/análise , Bovinos , Eucariotos/classificação , Eucariotos/genética , Eucariotos/isolamento & purificação , Moscas Domésticas/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/metabolismo , Esterco/análise , Nitrogênio/análise , RNA Ribossômico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...