Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(19): 5034-5040, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38696826

RESUMO

Permanent electronic ring currents are supported within manifolds of ΓE degenerate excited electronic states as E± = Ex ± iEy excitations. In [ Phys. Rev. Res. 2021, 3, L042003] we showed the existence of inverse-current manifolds, where the direction of the electronic ring current in each degenerate state E± is opposite to the circular polarization of the generating light fields. This vibronic effect is caused by the exchange of orbital angular momentum between the electrons and the vibrational modes with the required symmetry. Here we consider the case of fixed nuclei and find that ring-shaped molecular systems possess inverse-current manifolds on a purely electronic-structure basis, i.e., without intervention of vibronic coupling. The effect is explained first on a tight-binding model with cyclic symmetry and then considering the ab initio electronic structure of benzene and sym-triazine. A framework for discriminating regular- and inverse-current ΓE manifolds in molecules using quantum chemistry calculations is provided.

2.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38345112

RESUMO

We propose an approach to represent the second-quantized electronic Hamiltonian in a compact sum-of-products (SOP) form. The approach is based on the canonical polyadic decomposition of the original Hamiltonian projected onto the sub-Fock spaces formed by groups of spin-orbitals. The algorithm for obtaining the canonical polyadic form starts from an exact sum-of-products, which is then optimally compactified using an alternating least squares procedure. We discuss the relation of this specific SOP with related forms, namely the Tucker format and the matrix product operator often used in conjunction with matrix product states. We benchmark the method on the electronic dynamics of an excited water molecule, trans-polyenes, and the charge migration in glycine upon inner-valence ionization. The quantum dynamics are performed with the multilayer multiconfiguration time-dependent Hartree method in second quantization representation. Other methods based on tree-tensor Ansätze may profit from this general approach.

3.
J Chem Phys ; 157(13): 134102, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36209026

RESUMO

We introduce two different approaches to represent the second-quantized electronic Hamiltonian in a sum-of-products form. These procedures aim at mitigating the quartic scaling of the number of terms in the Hamiltonian with respect to the number of spin orbitals and thus enable applications to larger molecular systems. Here, we describe the application of these approaches within the multi-configuration time-dependent Hartree framework. This approach is applied to the calculation of eigenenergies of LiH and electronic ionization spectrum of H2O.

4.
J Chem Phys ; 155(13): 134110, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624967

RESUMO

We consider the application of the original Meyer-Miller (MM) Hamiltonian to mapping fermionic quantum dynamics to classical equations of motion. Non-interacting fermionic and bosonic systems share the same one-body density dynamics when evolving from the same initial many-body state. The MM classical mapping is exact for non-interacting bosons, and therefore, it yields the exact time-dependent one-body density for non-interacting fermions as well. Starting from this observation, the MM mapping is compared to different mappings specific for fermionic systems, namely, the spin mapping with and without including a Jordan-Wigner transformation and the Li-Miller mapping (LMM). For non-interacting systems, the inclusion of fermionic anti-symmetry through the Jordan-Wigner transform does not lead to any improvement in the performance of the mappings, and instead, it worsens the classical description. For an interacting impurity model and for models of excitonic energy transfer, the MM and LMM mappings perform similarly, and in some cases, the former outperforms the latter when compared to a full quantum description. The classical mappings are able to capture interference effects, both constructive and destructive, that originate from equivalent energy transfer pathways in the models.

5.
J Chem Phys ; 155(1): 014101, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241385

RESUMO

The Unitary Group Adapted State-Specific Multi-Reference Perturbation Theory (UGA-SSMRPT2) developed by Mukherjee et al. [J. Comput. Chem. 36, 670 (2015)] has successfully realized the goal of studying bond dissociation in a numerically stable, spin-preserving, and size-consistent manner. We explore and analyze here the efficacy of the UGA-SSMRPT2 theory in the description of the avoided crossings and interlacings between a manifold of potential energy curves for states belonging to the same space-spin symmetry. Three different aspects of UGA-SSMRPT2 have been studied: (a) We introduce and develop the most rigorous version of UGA-SSMRPT2 that emerges from the rigorous version of UGA-SSMRCC utilizing a linearly independent virtual manifold; we call this the "projection" version of UGA-SSMRPT2 (UGA-SSMRPT2 scheme P). We compare and contrast this approach with our earlier formulation that used extra sufficiency conditions via amplitude equations (UGA-SSMRPT2 scheme A). (b) We present the results for a variety of electronic states of a set of molecules, which display the striking accuracy of both the two versions of UGA-SSMRPT2 with respect to three different situations involving weakly avoided crossings, moderate/strongly avoided crossings, and interlacing in a manifold of potential energy curves (PECs) of the same symmetry. Accuracy of our results has been benchmarked against IC-MRCISD + Q.

6.
J Chem Phys ; 153(15): 154110, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33092359

RESUMO

A first principles quantum formalism to describe the non-adiabatic dynamics of electrons and nuclei based on a second quantization representation (SQR) of the electronic motion combined with the usual representation of the nuclear coordinates is introduced. This procedure circumvents the introduction of potential energy surfaces and non-adiabatic couplings, providing an alternative to the Born-Oppenheimer approximation. An important feature of the molecular Hamiltonian in the mixed first quantized representation for the nuclei and the SQR representation for the electrons is that all degrees of freedom, nuclear positions and electronic occupations, are distinguishable. This makes the approach compatible with various tensor decomposition Ansätze for the propagation of the nuclear-electronic wavefunction. Here, we describe the application of this formalism within the multi-configuration time-dependent Hartree framework and its multilayer generalization, corresponding to Tucker and hierarchical Tucker tensor decompositions of the wavefunction, respectively. The approach is applied to the calculation of the photodissociation cross section of the HeH+ molecule under extreme ultraviolet irradiation, which features non-adiabatic effects and quantum interferences between the two possible fragmentation channels, He + H+ and He+ + H. These calculations are compared with the usual description based on ab initio potential energy surfaces and non-adiabatic coupling matrix elements, which fully agree. The proof-of-principle calculations serve to illustrate the advantages and drawbacks of this formalism, which are discussed in detail, as well as possible ways to overcome them. We close with an outlook of possible application domains where the formalism might outperform the usual approach, for example, in situations that combine a strong static correlation of the electrons with non-adiabatic electronic-nuclear effects.

7.
J Chem Phys ; 152(10): 104302, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171231

RESUMO

This article deals with the extension of the relativistic double-ionization equation-of-motion coupled-cluster (DI-EOMCC) method [H. Pathak et al. Phys. Rev. A 90, 010501(R) (2014)] for the molecular systems. The Dirac-Coulomb Hamiltonian with four-component spinors is considered to take care of the relativistic effects. The implemented method is employed to compute a few low-lying doubly ionized states of noble gas atoms (Ar, Kr, Xe, and Rn) and Cl2, Br2, HBr, and HI. Additionally, we presented results with two intermediate schemes in the four-component relativistic DI-EOMCC framework to understand the role of electron correlation. The computed double ionization spectra for the atomic systems are compared with the values from the non-relativistic DI-EOMCC method with spin-orbit coupling [Z. Wang et al. J. Chem. Phys. 142, 144109 (2015)] and the values from the National Institute of Science and Technology (NIST) database. Our atomic results are found to be in good agreement with the NIST values. Furthermore, the obtained results for the molecular systems agree well with the available experimental values.

8.
J Chem Phys ; 145(7): 074110, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27544090

RESUMO

The open-shell reference relativistic equation-of-motion coupled-cluster method within its four-component description is successfully implemented with the consideration of single- and double- excitation approximations using the Dirac-Coulomb Hamiltonian. At the first attempt, the implemented method is employed to calculate ionization potential value of heavy atomic (Ag, Cs, Au, Fr, and Lr) and molecular (HgH and PbF) systems, where the effect of relativity does really matter to obtain highly accurate results. Not only the relativistic effect but also the effect of electron correlation is crucial in these heavy atomic and molecular systems. To justify the fact, we have taken two further approximations in the four-component relativistic equation-of-motion framework to quantify how the effect of electron correlation plays a role in the calculated values at different levels of theory. All these calculated results are compared with the available experimental data as well as with other theoretically calculated values to judge the extent of accuracy obtained in our calculations.

9.
J Chem Phys ; 144(12): 124307, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-27036448

RESUMO

The high effective electric field (Eeff) experienced by the unpaired electron in an atom or a molecule is one of the key ingredients in the success of electron electric dipole moment (eEDM) experiment and its precise calculation requires a very accurate theory. We, therefore, employed the Z-vector method in the relativistic coupled-cluster framework and found that HgH has a very large Eeff value (123.2 GV/cm) which makes it a potential candidate for the next generation eEDM experiment. Our study also reveals that it has a large scalar-pseudoscalar (S-PS) P,T-violating interaction constant, Ws = 284.2 kHz. To judge the accuracy of the obtained results, we have calculated parallel and perpendicular magnetic hyperfine structure (HFS) constants and compared with the available experimental values. The results of our calculation are found to be in nice agreement with the experimental values. Therefore, by looking at the HFS results, we can say that both Eeff and Ws values are also very accurate. Further, We have derived the relationship between these quantities and the ratio which will help to get model independent value of eEDM and S-PS interaction constant.

10.
J Chem Phys ; 143(8): 084119, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26328830

RESUMO

The effective electric field experienced by the unpaired electron in the ground state of PbF, which is a potential candidate in the search of electron electric dipole moment due to some special characteristics, is calculated using Z-vector method in the coupled cluster single- and double- excitation approximation with four component Dirac spinor. This is an important quantity to set the upper bound limit of the electron electric dipole moment. Further, we have calculated molecular dipole moment and parallel magnetic hyperfine structure constant (A‖) of (207)Pb in PbF to test the accuracy of the wavefunction obtained in the Z-vector method. The outcome of our calculations clearly suggests that the core electrons have significant contribution to the "atom in compound" properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...