Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Pharm Sci ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615817

RESUMO

Innovative analytical instruments and development of new methods has provided a better understanding of protein particle formation in biopharmaceuticals but have also challenged the ability to obtain reproducible and reliable measurements. The need for protein-like particle standards mimicking the irregular shape, translucent nature and near-to-neutral buoyancy of protein particles remained one of the hot topics in the field of particle detection and characterization in biopharmaceutical formulations. An innovative protein-like particle model has been developed using two photo polymerization (2PP) printing allowing to fabricate irregularly shaped particles with similar properties as protein particles at precise size of 50 µm and 150 µm, representative of subvisible particles and visible particles, respectively. A study was conducted to compare the morphological, physical, and optical properties of artificially generated protein particles, polystyrene spheres, ETFE, and SU-8 particle standards, along with newly developed protein-like model particles manufactured using 2PP printing. Our results suggest that 2PP printing can be used to produce protein-like particle standards that might facilitate harmonization and standardization of subvisible and visible protein particle characterization across laboratories and organizations.

3.
Front Synaptic Neurosci ; 13: 671288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220481

RESUMO

The development of super-resolution microscopy (SRM) has widened our understanding of biomolecular structure and function in biological materials. Imaging multiple targets within a single area would elucidate their spatial localization relative to the cell matrix and neighboring biomolecules, revealing multi-protein macromolecular structures and their functional co-dependencies. SRM methods are, however, limited to the number of suitable fluorophores that can be imaged during a single acquisition as well as the loss of antigens during antibody washing and restaining for organic dye multiplexing. We report the visualization of multiple protein targets within the pre- and postsynapse in 350-400 nm thick neuronal tissue sections using DNA-assisted single-molecule localization microscopy (SMLM). In a single labeling step, antibodies conjugated with short DNA oligonucleotides visualized multiple targets by sequential exchange of fluorophore-labeled complementary oligonucleotides present in the imaging buffer. This approach avoids potential effects on structural integrity when using multiple rounds of immunolabeling and eliminates chromatic aberration, because all targets are imaged using a single excitation laser wavelength. This method proved robust for multi-target imaging in semi-thin tissue sections with a lateral resolution better than 25 nm, paving the way toward structural cell biology with single-molecule SRM.

5.
Nat Cell Biol ; 23(1): 23-31, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33398177

RESUMO

A detailed understanding of intestinal stem cell (ISC) self-renewal and differentiation is required to treat chronic intestinal diseases. However, the different models of ISC lineage hierarchy1-6 and segregation7-12 are subject to debate. Here, we have discovered non-canonical Wnt/planar cell polarity (PCP)-activated ISCs that are primed towards the enteroendocrine or Paneth cell lineage. Strikingly, integration of time-resolved lineage labelling with single-cell gene expression analysis revealed that both lineages are directly recruited from ISCs via unipotent transition states, challenging the existence of formerly predicted bi- or multipotent secretory progenitors7-12. Transitory cells that mature into Paneth cells are quiescent and express both stem cell and secretory lineage genes, indicating that these cells are the previously described Lgr5+ label-retaining cells7. Finally, Wnt/PCP-activated Lgr5+ ISCs are molecularly indistinguishable from Wnt/ß-catenin-activated Lgr5+ ISCs, suggesting that lineage priming and cell-cycle exit is triggered at the post-transcriptional level by polarity cues and a switch from canonical to non-canonical Wnt/PCP signalling. Taken together, we redefine the mechanisms underlying ISC lineage hierarchy and identify the Wnt/PCP pathway as a new niche signal preceding lateral inhibition in ISC lineage priming and segregation.


Assuntos
Linhagem da Célula , Polaridade Celular , Células Enteroendócrinas/citologia , Mucosa Intestinal/citologia , Celulas de Paneth/citologia , Células-Tronco/citologia , Proteínas Wnt/metabolismo , Animais , Autorrenovação Celular , Células Enteroendócrinas/metabolismo , Feminino , Perfilação da Expressão Gênica , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Celulas de Paneth/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Análise de Célula Única , Células-Tronco/metabolismo , beta Catenina/metabolismo
6.
Nat Commun ; 11(1): 1552, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214101

RESUMO

Understanding the nano-architecture of protein machines in diverse subcellular compartments remains a challenge despite rapid progress in super-resolution microscopy. While single-molecule localization microscopy techniques allow the visualization and identification of cellular structures with near-molecular resolution, multiplex-labeling of tens of target proteins within the same sample has not yet been achieved routinely. However, single sample multiplexing is essential to detect patterns that threaten to get lost in multi-sample averaging. Here, we report maS3TORM (multiplexed automated serial staining stochastic optical reconstruction microscopy), a microscopy approach capable of fully automated 3D direct STORM (dSTORM) imaging and solution exchange employing a re-staining protocol to achieve highly multiplexed protein localization within individual biological samples. We demonstrate 3D super-resolution images of 15 targets in single cultured cells and 16 targets in individual neuronal tissue samples with <10 nm localization precision, allowing us to define distinct nano-architectural features of protein distribution within the presynaptic nerve terminal.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Proteínas/metabolismo , Animais , Humanos , Imageamento Tridimensional/instrumentação , Microscopia de Fluorescência/instrumentação , Neurônios/metabolismo , Robótica , Software , Coloração e Rotulagem/instrumentação , Transmissão Sináptica
7.
Thorax ; 75(2): 184-187, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048507

RESUMO

We developed a MRI protocol using transverse (T2) and longitudinal (T1) mapping sequences to characterise lung structural changes in preterm infants with bronchopulmonary dysplasia (BPD). We prospectively enrolled 61 infants to perform 3-Tesla MRI of the lung in quiet sleep. Statistical analysis was performed using logistic Group Lasso regression and logistic regression. Increased lung T2 relaxation time and decreased lung T1 relaxation time indicated BPD yielding an area under the curve (AUC) of 0.80. Results were confirmed in an independent study cohort (AUC 0.75) and mirrored by lung function testing, indicating the high potential for MRI in future BPD diagnostics. TRIAL REGISTRATION: DRKS00004600.


Assuntos
Displasia Broncopulmonar/diagnóstico por imagem , Displasia Broncopulmonar/fisiopatologia , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética/métodos , Área Sob a Curva , Estudos de Coortes , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Modelos Logísticos , Masculino , Estudos Prospectivos , Índice de Gravidade de Doença
8.
Brief Bioinform ; 21(1): 272-281, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30351397

RESUMO

Copy number aberrations (CNAs) are known to strongly affect oncogenes and tumour suppressor genes. Given the critical role CNAs play in cancer research, it is essential to accurately identify CNAs from tumour genomes. One particular challenge in finding CNAs is the effect of confounding variables. To address this issue, we assessed how commonly used CNA identification algorithms perform on SNP 6.0 genotyping data in the presence of confounding variables. We simulated realistic synthetic data with varying levels of three confounding variables-the tumour purity, the length of a copy number region and the CNA burden (the percentage of CNAs present in a profiled genome)-and evaluated the performance of OncoSNP, ASCAT, GenoCNA, GISTIC and CGHcall. Furthermore, we implemented and assessed CGHcall*, an adjusted version of CGHcall accounting for high CNA burden. Our analysis on synthetic data indicates that tumour purity and the CNA burden strongly influence the performance of all the algorithms. No algorithm can correctly find lost and gained genomic regions across all tumour purities. The length of CNA regions influenced the performance of ASCAT, CGHcall and GISTIC. OncoSNP, GenoCNA and CGHcall* showed little sensitivity. Overall, CGHcall* and OncoSNP showed reasonable performance, particularly in samples with high tumour purity. Our analysis on the HapMap data revealed a good overlap between CGHcall, CGHcall* and GenoCNA results and experimentally validated data. Our exploratory analysis on the TCGA HNSCC data revealed plausible results of CGHcall, CGHcall* and GISTIC in consensus HNSCC CNA regions. Code is available at https://github.com/adspit/PASCAL.

9.
Genome Biol ; 20(1): 155, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387612

RESUMO

We describe a highly sensitive, quantitative, and inexpensive technique for targeted sequencing of transcript cohorts or genomic regions from thousands of bulk samples or single cells in parallel. Multiplexing is based on a simple method that produces extensive matrices of diverse DNA barcodes attached to invariant primer sets, which are all pre-selected and optimized in silico. By applying the matrices in a novel workflow named Barcode Assembly foR Targeted Sequencing (BART-Seq), we analyze developmental states of thousands of single human pluripotent stem cells, either in different maintenance media or upon Wnt/ß-catenin pathway activation, which identifies the mechanisms of differentiation induction. Moreover, we apply BART-Seq to the genetic screening of breast cancer patients and identify BRCA mutations with very high precision. The processing of thousands of samples and dynamic range measurements that outperform global transcriptomics techniques makes BART-Seq first targeted sequencing technique suitable for numerous research applications.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Neoplasias da Mama/genética , Análise Custo-Benefício , Células-Tronco Embrionárias/metabolismo , Feminino , Perfilação da Expressão Gênica/economia , Genômica/economia , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Células-Tronco Pluripotentes/metabolismo , Análise de Sequência de RNA/economia , Análise de Célula Única/economia , Análise de Célula Única/métodos , Via de Sinalização Wnt , Fluxo de Trabalho
10.
Sci Rep ; 8(1): 1366, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358694

RESUMO

The number of pregnancies complicated by gestational diabetes (GDM) is increasing worldwide. To identify novel characteristics of GDM, we studied miRNA profiles of maternal and fetal whole blood cells (WBCs) from GDM and normal glucose tolerant (NGT) pregnant women matched for body mass index and maternal age. After adjustment for maternal weight gain and pregnancy week, we identified 29 mature micro-RNAs (miRNAs) up-regulated in GDM, one of which, i.e., miRNA-340, was validated by qPCR. mRNA and protein expression of PAIP1, a miRNA-340 target gene, was found down-regulated in GDM women, accordingly. In lymphocytes derived from the mothers' blood and treated in vitro, insulin increased and glucose reduced miRNA-340 expression. In fetal cord blood samples, no associations of miRNA-340 with maternal GDM were observed. Our results provide evidence for insulin-induced epigenetic, i.e., miRNA-dependent, programming of maternal WBCs in GDM.


Assuntos
Diabetes Gestacional/genética , Insulina/sangue , MicroRNAs/sangue , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Regulação para Cima , Adulto , Índice de Massa Corporal , Diabetes Gestacional/sangue , Epigênese Genética , Feminino , Sangue Fetal/química , Teste de Tolerância a Glucose , Humanos , Leucócitos Mononucleares/metabolismo , Idade Materna , Fatores de Iniciação de Peptídeos/metabolismo , Gravidez , Proteínas de Ligação a RNA/metabolismo
11.
Mol Cancer Res ; 16(3): 390-402, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29330288

RESUMO

Most lung cancer deaths are related to metastases, which indicates the necessity of detecting and inhibiting tumor cell dissemination. Here, we aimed to identify miRNAs involved in metastasis of lung adenocarcinoma as prognostic biomarkers and therapeutic targets. To that end, lymph node metastasis-associated miRNAs were identified in The Cancer Genome Atlas lung adenocarcinoma patient cohort (sequencing data; n = 449) and subsequently validated by qRT-PCR in an independent clinical cohort (n = 108). Overexpression of miRNAs located on chromosome 14q32 was associated with metastasis in lung adenocarcinoma patients. Importantly, Kaplan-Meier analysis and log-rank test revealed that higher expression levels of individual 14q32 miRNAs (mir-539, mir-323b, and mir-487a) associated with worse disease-free survival of never-smoker patients. Epigenetic analysis including DNA methylation microarray data and bisulfite sequencing validation demonstrated that the induction of 14q32 cluster correlated with genomic hypomethylation of the 14q32 locus. CRISPR activation technology, applied for the first time to functionally study the increase of clustered miRNA levels in a coordinated manner, showed that simultaneous overexpression of 14q32 miRNAs promoted tumor cell migratory and invasive properties. Analysis of individual miRNAs by mimic transfection further illustrated that miR-323b-3p, miR-487a-3p, and miR-539-5p significantly contributed to the invasive phenotype through the indirect regulation of different target genes. In conclusion, overexpression of 14q32 miRNAs, associated with the respective genomic hypomethylation, promotes metastasis and correlates with poor patient prognosis in lung adenocarcinoma.Implications: This study points to chromosome 14q32 miRNAs as promising targets to inhibit tumor cell dissemination and to predict patient prognosis in lung adenocarcinoma. Mol Cancer Res; 16(3); 390-402. ©2018 AACR.


Assuntos
Adenocarcinoma de Pulmão/genética , Cromossomos Humanos Par 14 , MicroRNAs/genética , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Estudos de Coortes , Epigênese Genética , Feminino , Humanos , Masculino , Metástase Neoplásica , Prognóstico
13.
Proc Natl Acad Sci U S A ; 114(45): E9579-E9588, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078328

RESUMO

To elucidate the molecular basis of BMP4-induced differentiation of human pluripotent stem cells (PSCs) toward progeny with trophectoderm characteristics, we produced transcriptome, epigenome H3K4me3, H3K27me3, and CpG methylation maps of trophoblast progenitors, purified using the surface marker APA. We combined them with the temporally resolved transcriptome of the preprogenitor phase and of single APA+ cells. This revealed a circuit of bivalent TFAP2A, TFAP2C, GATA2, and GATA3 transcription factors, coined collectively the "trophectoderm four" (TEtra), which are also present in human trophectoderm in vivo. At the onset of differentiation, the TEtra factors occupy multiple sites in epigenetically inactive placental genes and in OCT4 Functional manipulation of GATA3 and TFAP2A indicated that they directly couple trophoblast-specific gene induction with suppression of pluripotency. In accordance, knocking down GATA3 in primate embryos resulted in a failure to form trophectoderm. The discovery of the TEtra circuit indicates how trophectoderm commitment is regulated in human embryogenesis.


Assuntos
Diferenciação Celular/fisiologia , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA3/metabolismo , Placenta/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fator de Transcrição AP-2/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Linhagem Celular , Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias/metabolismo , Feminino , Humanos , Macaca mulatta , Gravidez , Transcriptoma/fisiologia , Trofoblastos/metabolismo
14.
Biomol Detect Quantif ; 11: 31-44, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28331816

RESUMO

The process of adipogenesis is controlled in a highly orchestrated manner, including transcriptional and post-transcriptional events. In developing 3T3-L1 pre-adipocytes, this program can be interrupted by all-trans retinoic acid (ATRA). To examine this inhibiting impact by ATRA, we generated large-scale transcriptomic data on the microRNA and mRNA level. Non-coding RNAs such as microRNAs represent a field in RNA turnover, which is very important for understanding the regulation of mRNA gene expression. High throughput mRNA and microRNA expression profiling was performed using mRNA hybridisation microarray technology and multiplexed expression assay for microRNA quantification. After quantitative measurements we merged expression data sets, integrated the results and analysed the molecular regulation of in vitro adipogenesis. For this purpose, we applied local enrichment analysis on the integrative microRNA-mRNA network determined by a linear regression approach. This approach includes the target predictions of TargetScan Mouse 5.2 and 23 pre-selected, significantly regulated microRNAs as well as Affymetrix microarray mRNA data. We found that the cellular lipid metabolism is negatively affected by ATRA. Furthermore, we were able to show that microRNA 27a and/or microRNA 96 are important regulators of gap junction signalling, the rearrangement of the actin cytoskeleton as well as the citric acid cycle, which represent the most affected pathways with regard to inhibitory effects of ATRA in 3T3-L1 preadipocytes. In conclusion, the experimental workflow and the integrative microRNA-mRNA data analysis shown in this study represent a possibility for illustrating interactions in highly orchestrated biological processes. Further the applied global microRNA-mRNA interaction network may also be used for the pre-selection of potential new biomarkers with regard to obesity or for the identification of new pharmaceutical targets.

15.
Oncotarget ; 8(14): 22876-22893, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28206967

RESUMO

Neuroblastoma (NB) is a pediatric cancer treated with poly-chemotherapy including platinum complexes (e.g. cisplatin (CDDP), carboplatin), DNA alkylating agents, and topoisomerase I inhibitors (e.g. topotecan (TOPO)). Despite aggressive treatment, NB may become resistant to chemotherapy. We investigated whether CDDP and TOPO treatment of NB cells interacts with the expression and function of proteins involved in regulating calcium signaling. Human neuroblastoma cell lines SH-SY5Y, IMR-32 and NLF were used to investigate the effects of CDDP and TOPO on cell viability, apoptosis, calcium homeostasis, and expression of selected proteins regulating intracellular calcium concentration ([Ca2+]i). In addition, the impact of pharmacological inhibition of [Ca2+]i-regulating proteins on neuroblastoma cell survival was studied. Treatment of neuroblastoma cells with increasing concentrations of CDDP (0.1-10 µM) or TOPO (0.1 nM-1 µM) induced cytotoxicity and increased apoptosis in a concentration- and time-dependent manner. Both drugs increased [Ca2+]i over time. Treatment with CDDP or TOPO also modified mRNA expression of selected genes encoding [Ca2+]i-regulating proteins. Differentially regulated genes included S100A6, ITPR1, ITPR3, RYR1 and RYR3. With FACS and confocal laser scanning microscopy experiments we validated their differential expression at the protein level. Importantly, treatment of neuroblastoma cells with pharmacological modulators of [Ca2+]i-regulating proteins in combination with CDDP or TOPO increased cytotoxicity. Thus, our results confirm an important role of calcium signaling in the response of neuroblastoma cells to chemotherapy and suggest [Ca2+]i modulation as a promising strategy for adjunctive treatment.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Apoptose , Linhagem Celular Tumoral , Humanos , Prognóstico
16.
Nat Genet ; 48(5): 497-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26974008

RESUMO

There is considerable controversy regarding epigenetic inheritance in mammalian gametes. Using in vitro fertilization to ensure exclusive inheritance via the gametes, we show that a parental high-fat diet renders offspring more susceptible to developing obesity and diabetes in a sex- and parent of origin-specific mode. The epigenetic inheritance of acquired metabolic disorders may contribute to the current obesity and diabetes pandemic.


Assuntos
Dieta Hiperlipídica , Epigênese Genética , Resistência à Insulina/genética , Obesidade/genética , Animais , Feminino , Fertilização in vitro , Predisposição Genética para Doença , Células Germinativas , Padrões de Herança , Masculino , Camundongos Endogâmicos C57BL
17.
Oncotarget ; 7(11): 12937-50, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26887050

RESUMO

Glioblastoma is the most aggressive brain tumor in adults with a median survival below 12 months in population-based studies. The main reason for tumor recurrence and progression is constitutive or acquired resistance to the standard of care of surgical resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ/RT→TMZ). Here, we investigated the role of microRNA (miRNA) alterations as mediators of alkylator resistance in glioblastoma cells. Using microarray-based miRNA expression profiling of parental and TMZ-resistant cultures of three human glioma cell lines, we identified a set of differentially expressed miRNA candidates. From these, we selected miR-138 for further functional analyses as this miRNA was not only upregulated in TMZ-resistant versus parental cells, but also showed increased expression in vivo in recurrent glioblastoma tissue samples after TMZ/RT→TMZ treatment. Transient transfection of miR-138 mimics in glioma cells with low basal miR-138 expression increased glioma cell proliferation. Moreover, miR-138 overexpression increased TMZ resistance in long-term glioblastoma cell lines and glioma initiating cell cultures. The apoptosis regulator BIM was identified as a direct target of miR-138, and its silencing mediated the induced TMZ resistance phenotype. Altered sensitivity to apoptosis played only a minor role in this resistance mechanism. Instead, we identified the induction of autophagy to be regulated downstream of the miR-138/BIM axis and to promote cell survival following TMZ exposure. Our data thus define miR-138 as a glioblastoma cell survival-promoting miRNA associated with resistance to TMZ therapy in vitro and with tumor progression in vivo.


Assuntos
Neoplasias Encefálicas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/genética , MicroRNAs/genética , Proteína 11 Semelhante a Bcl-2/biossíntese , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/metabolismo , Humanos
18.
Mech Dev ; 139: 51-64, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26643664

RESUMO

Pancreas organogenesis is a highly dynamic process where neighboring tissue interactions lead to dynamic changes in gene regulatory networks that orchestrate endocrine, exocrine, and ductal lineage formation. To understand the spatio-temporal regulatory logic we have used the Forkhead transcription factor Foxa2-Venus fusion (FVF) knock-in reporter mouse to separate the FVF(+) pancreatic epithelium from the FVF(−) surrounding tissue (mesenchyme, neurons, blood, and blood vessels) to perform a genome-wide mRNA expression profiling at embryonic days (E) 12.5-15.5. Annotating genes and molecular processes suggest that FVF marks endoderm-derived multipotent epithelial progenitors at several lineage restriction steps, when the bulk of endocrine, exocrine and ductal cells are formed during the secondary transition. In the pancreatic epithelial compartment, we identified most known endocrine and exocrine lineage determining factors and diabetes-associated genes, but also unknown genes with spatio-temporal regulated pancreatic expression. In the non-endoderm-derived compartment, we identified many well-described regulatory genes that are not yet functionally annotated in pancreas development, emphasizing that neighboring tissue interactions are still ill defined. Pancreatic expression of over 635 genes was analyzed with them RNA in situ hybridization Genepaint public database. This validated the quality of the profiling data set and identified hundreds of genes with spatially restricted expression patterns in the pancreas. Some of these genes are also targeted by pancreatic transcription factors and show active chromatin marks in human islets of Langerhans. Thus, with the highest spatio-temporal resolution of a global gene expression profile during the secondary transition, our study enables to shed light on neighboring tissue interactions, developmental timing and diabetes gene regulation.


Assuntos
Pâncreas/embriologia , Transcriptoma , Animais , Diferenciação Celular , Endoderma/embriologia , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Fator 3-beta Nuclear de Hepatócito/fisiologia , Humanos , Camundongos , Células-Tronco Multipotentes/fisiologia , Organogênese , Pâncreas/citologia , Pâncreas/metabolismo
19.
Int J Mol Sci ; 16(12): 30204-22, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26694379

RESUMO

MicroRNAs represent ~22 nt long endogenous small RNA molecules that have been experimentally shown to regulate gene expression post-transcriptionally. One main interest in miRNA research is the investigation of their functional roles, which can typically be accomplished by identification of mi-/mRNA interactions and functional annotation of target gene sets. We here present a novel method "miRlastic", which infers miRNA-target interactions using transcriptomic data as well as prior knowledge and performs functional annotation of target genes by exploiting the local structure of the inferred network. For the network inference, we applied linear regression modeling with elastic net regularization on matched microRNA and messenger RNA expression profiling data to perform feature selection on prior knowledge from sequence-based target prediction resources. The novelty of miRlastic inference originates in predicting data-driven intra-transcriptome regulatory relationships through feature selection. With synthetic data, we showed that miRlastic outperformed commonly used methods and was suitable even for low sample sizes. To gain insight into the functional role of miRNAs and to determine joint functional properties of miRNA clusters, we introduced a local enrichment analysis procedure. The principle of this procedure lies in identifying regions of high functional similarity by evaluating the shortest paths between genes in the network. We can finally assign functional roles to the miRNAs by taking their regulatory relationships into account. We thoroughly evaluated miRlastic on a cohort of head and neck cancer (HNSCC) patients provided by The Cancer Genome Atlas. We inferred an mi-/mRNA regulatory network for human papilloma virus (HPV)-associated miRNAs in HNSCC. The resulting network best enriched for experimentally validated miRNA-target interaction, when compared to common methods. Finally, the local enrichment step identified two functional clusters of miRNAs that were predicted to mediate HPV-associated dysregulation in HNSCC. Our novel approach was able to characterize distinct pathway regulations from matched miRNA and mRNA data. An R package of miRlastic was made available through: http://icb.helmholtz-muenchen.de/mirlastic.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Neoplasias de Cabeça e Pescoço/genética , MicroRNAs/metabolismo , Análise por Conglomerados , Humanos , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tamanho da Amostra , Carcinoma de Células Escamosas de Cabeça e Pescoço
20.
PLoS One ; 10(8): e0135284, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26270642

RESUMO

INTRODUCTION: Skeletal muscle cell differentiation is impaired by elevated levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α) with pathological significance in chronic diseases or inherited muscle disorders. Insulin like growth factor-1 (IGF1) positively regulates muscle cell differentiation. Both, TNF-α and IGF1 affect gene and microRNA (miRNA) expression in this process. However, computational prediction of miRNA-mRNA relations is challenged by false positives and targets which might be irrelevant in the respective cellular transcriptome context. Thus, this study is focused on functional information about miRNA affected target transcripts by integrating miRNA and mRNA expression profiling data. METHODOLOGY/PRINCIPAL FINDINGS: Murine skeletal myocytes PMI28 were differentiated for 24 hours with concomitant TNF-α or IGF1 treatment. Both, mRNA and miRNA expression profiling was performed. The data-driven integration of target prediction and paired mRNA/miRNA expression profiling data revealed that i) the quantity of predicted miRNA-mRNA relations was reduced, ii) miRNA targets with a function in cell cycle and axon guidance were enriched, iii) differential regulation of anti-differentiation miR-155-5p and miR-29b-3p as well as pro-differentiation miR-335-3p, miR-335-5p, miR-322-3p, and miR-322-5p seemed to be of primary importance during skeletal myoblast differentiation compared to the other miRNAs, iv) the abundance of targets and affected biological processes was miRNA specific, and v) subsets of miRNAs may collectively regulate gene expression. CONCLUSIONS: Joint analysis of mRNA and miRNA profiling data increased the process-specificity and quality of predicted relations by statistically selecting miRNA-target interactions. Moreover, this study revealed miRNA-specific predominant biological implications in skeletal muscle cell differentiation and in response to TNF-α or IGF1 treatment. Furthermore, myoblast differentiation-associated miRNAs are suggested to collectively regulate gene clusters and targets associated with enriched specific gene ontology terms or pathways. Predicted miRNA functions of this study provide novel insights into defective regulation at the transcriptomic level during myocyte proliferation and differentiation due to inflammatory stimuli.


Assuntos
Fator de Crescimento Insulin-Like I/farmacologia , MicroRNAs/genética , Fibras Musculares Esqueléticas/citologia , RNA Mensageiro/genética , Fator de Necrose Tumoral alfa/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Camundongos , MicroRNAs/metabolismo , Família Multigênica/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...