Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(31): 22393-22402, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39010927

RESUMO

3D printing of water stable proteins with elastic properties offers a broad range of applications including self-powered biomedical devices driven by piezoelectric biomaterials. Here, we present a study on water-soluble silk fibroin (SF) films. These films were prepared by mixing degummed silk fibers and calcium chloride (CaCl2) in formic acid, resulting in a silk I-like conformation, which was then converted into silk II by redissolving in phosphate buffer (PBS). Circular dichroism, Raman and infrared (IR) spectroscopies were used to investigate the transitions of secondary structure in silk I and silk II as the pH of the solvent and the sonication time were changed. We showed that a solvent with low pH (e.g. 4) maintains the silk I ß-turn structure; in contrast solvent with higher pH (e.g. 7.4) promotes ß-sheet features of silk II. Ultrasonic treatment facilitates the transition to water stable silk II only for the SF redissolved in PBS. SF from pH 7.4 solution has been printed using extrusion-based 3D printing. A self-powered memristor was realized, comprising an SF-based electric generator and an SF 3D-printed memristive unit connected in series. By exploiting the piezoelectric properties of silk II with higher ß-sheet content and Ca2+ ion transport phenomena, the application of an input voltage driven by a SF generator to SF 3D printed holey structures induces a variation from an initial low resistance state (LRS) to a high resistance state (HRS) that recovers in a few minutes, mimicking the transient memory, also known as short-term memory. Thanks to this holistic approach, these findings can contribute to the development of self-powered neuromorphic networks based on biomaterials with memory capabilities.

2.
Appl Spectrosc ; : 37028241245443, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632936

RESUMO

Saltwater stands as the most prevalent liquid on Earth. Consequently, substantial interest has been directed toward its characterization, both as an independent system and as a solvent for complex structures such as biomacromolecules. In the last few decades, special emphasis was placed on the investigation of the hydration properties of ions for the fundamental role they play in numerous chemical processes. In this study, we employed multi-wavelength Raman spectroscopy to examine the hydration shell surrounding bromide ions in solutions of simple electrolytes, specifically lithium bromide, potassium bromide, and cesium bromide, at two different concentrations. Cation-induced differences among electrolytes were observed in connection to their tendency to form ion pairs. An increased sensitivity to reveal the structure of the first hydration shell was evidenced when employing ultraviolet excitation in the 228-266 nm range, under resonance conditions with the charge transfer transition to the solvent peaked at about 200 nm. Other than a significant increase in the Raman cross-section for the OH stretching band when shifting from pure water to the solution, a larger enhancement for the Raman signal of the H-O-H bending mode over the stretching vibration was observed. Thus, the bending band plays a crucial role in monitoring the H-bond structure of water around the anions related to the charge distribution within the first hydration shell of anions, being an effective probe of hydration phenomena.

3.
ACS Omega ; 9(16): 17977-17988, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680339

RESUMO

Despite the technological importance of semiconductor black phosphorus (BP) in materials science, maintaining the stability of BP crystals in organic media and protecting them from environmental oxidation remains challenging. In this study, we present the synthesis of bulk BP and the exploitation of the viscoelastic properties of a regenerated silk fibroin (SF) film as a biocompatible substrate to transfer BP flakes, thereby preventing oxidation. A model based on the flow of polymers revealed that the applied flow-induced stresses exceed the yield stress of the BP aggregate. Raman spectroscopy was used to investigate the exfoliation efficiency as well as the environmental stability of BP transferred on the SF substrate. Notably, BP flakes transferred to the SF substrate demonstrated improved stability when SF was dissolved in a phosphate-buffered saline medium, and in vitro cancer cell viability experiments demonstrate the tumor ablation efficiency under visible to near-infrared (Vis-nIR) radiation. Moreover, the SF and BP-enriched SF (SF/BP) solution was shown to be processable via extrusion-based three-dimensional (3D) printing. Therefore, this work paves the way for a general method for the transferring of BP on natural biodegradable polymers and processing them via 3D printing toward novel functionalities and complex shapes for biomedical purposes.

5.
Genetica ; 152(1): 1-9, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38102503

RESUMO

Dehydration is a stress factor for organisms inhabiting natural habitats where water is scarce. Thus, it may be expected that species facing arid environments will develop mechanisms that maximize resistance to desiccation. Insects are excellent models for studying the effects of dehydration as well as the mechanisms and processes that prevent water loss since the effect of desiccation is greater due to the higher area/volume ratio than larger animals. Even though physiological and behavioral mechanisms to cope with desiccation are being understood, the genetic basis underlying the mechanisms related to variation in desiccation resistance and the context-dependent effect remain unsolved. Here we analyze the genetic bases of desiccation resistance in Drosophila melanogaster and identify candidate genes that underlie trait variation. Our quantitative genetic analysis of desiccation resistance revealed sexual dimorphism and extensive genetic variation. The phenotype-genotype association analyses (GWAS) identified 71 candidate genes responsible for total phenotypic variation in desiccation resistance. Half of these candidate genes were sex-specific suggesting that the genetic architecture underlying this adaptive trait differs between males and females. Moreover, the public availability of desiccation data analyzed on the same lines but in a different lab allows us to investigate the reliability and repeatability of results obtained in independent screens. Our survey indicates a pervasive micro-environment lab-dependent effect since we did not detect overlap in the sets of genes affecting desiccation resistance identified between labs.


Assuntos
Desidratação , Drosophila melanogaster , Animais , Feminino , Masculino , Drosophila melanogaster/genética , Desidratação/genética , Dessecação , Reprodutibilidade dos Testes , Drosophila/fisiologia , Água
6.
ACS Omega ; 8(41): 38233-38242, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867705

RESUMO

In this study, we dissolved Bombyx mori degummed silk [i.e., silk fibroin (SF)] and salmon sperm deoxyribonucleic acid (DNA) in water and used a bioinspired spinning process to obtain an electrospun nanofibrous SF-based patch (ESF). We investigated the bidirectional macroscale actuation behavior of ESF in response to water vapor and its UV-blocking properties as well as those of ESF/DNA films. Fourier transform infrared (FTIR) results suggest that the formation of ß-sheet-rich structures promotes the actuation effect. ESF/DNA film with high-ordered and ß-sheet-rich structures exhibits higher electrical conductivity and is water-insoluble. Given the intrinsic ability of both SF and DNA to absorb UV radiation, we performed biological experiments on the viability of keratinocyte HaCaT cells after exposure to solar spectrum components. Our findings indicate that the ESF/DNA patch is photoprotective and can increase the cellular viability of keratinocytes after UV exposure. Furthermore, we demonstrated that ESF/DNA patches treated with water vapor can serve as suitable scaffolds for tissue engineering and can improve tissue regeneration when cellularized with HaCaT cells. The 3D shape morphing capability of these patches, along with their potential as UV filters, could offer significant practical advantages in tissue engineering.

7.
J Transl Med ; 21(1): 617, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697391

RESUMO

BACKGROUND: Vibrational spectroscopy can be a valuable tool to monitor the markers of cardiovascular diseases. In the present work, we explored the vibrational spectroscopy characteristics of the cardiac tissue in an experimental model of heart failure with preserved ejection fraction (HFpEF). The goal was to detect early cardiac chemical modifications associated with the development of HFpEF. METHODS: We used the Fourier-transform infrared (FTIR) and Raman micro-spectroscopic techniques to provide complementary and objective tools for the histological assessment of heart tissues from an animal model of HFpEF. A new sampling technique was adopted (tissue print on a CaF2 disk) to characterize the extracellular matrix. RESULTS: Several spectroscopic markers (lipids, carbohydrates, and glutamate bands) were recognized in the cardiac ventricles due to the comorbidities associated with the pathology, such as obesity and diabetes. Besides, abnormal collagen cross-linking and a decrease in tryptophan content were observed and related to the stiffening of ventricles and to the inflammatory state which is a favourable condition for HFpEF. CONCLUSIONS: By the analyses of tissues and tissue prints, FTIR and Raman techniques were shown to be highly sensitive and selective in detecting changes in the chemistry of the heart in experimental HFpEF and its related comorbidities. Vibrational spectroscopy is a new approach that can identify novel biomarkers for early detection of HFpEF.


Assuntos
Insuficiência Cardíaca , Animais , Volume Sistólico , Miocárdio , Coração , Análise Espectral
8.
J Biophotonics ; 16(11): e202300163, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37528685

RESUMO

Extracorporeal membrane oxygenation (ECMO) is an invasive medical technique used to provide life support in persons with insufficient cardiac and respiratory functionalities, or to preserve, postmortem, and organ function addressing organ/tissue transplant. Although a lot of information is available about organs in their entirety, the safety and effectiveness of allogeneic tissues collected from ECMO donors have not been fully elucidated. In this preliminary study, samples of tibial and peroneal human tendons were analyzed along their length with Raman microspectroscopy and attenuated total reflection-Fourier transform infrared micro-imaging. Both techniques evidenced a different chemical composition in the terminal with respect to the central part of the tendon. Thus, a differentiated analysis was performed depending on the specific position with respect to the bone or the muscle junctions. Spectroscopic analyses showed significant differences in the characteristics of the extracellular matrix between tendons from ECMO and non-ECMO donors, suggesting changes in the amino acid (proline and hydroxyproline) content and protein structure.


Assuntos
Oxigenação por Membrana Extracorpórea , Humanos , Oxigenação por Membrana Extracorpórea/métodos , Análise Espectral , Doadores de Tecidos , Tendões/diagnóstico por imagem , Osso e Ossos
9.
Colloids Surf B Biointerfaces ; 228: 113434, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37393699

RESUMO

Interactions between amyloid protein structures and nanomaterials have been extensively studied to develop effective inhibitors of amyloid aggregation. Limited investigations are reported on the impact of nanoparticles on mature fibrils. In this work, gold nanoparticles are used as photothermal agents to alter insulin fibrils. To this end, gold colloids bearing a negatively charged capping shell, with an average diameter of 14 nm and a plasmon resonance maximum at 520 nm are synthesized. The effects on mature insulin fibril morphology and structure upon plasmonic excitation of the nanoparticles-fibril samples have been monitored by spectroscopic and microscopic methods. The obtained data indicate that an effective destruction of the amyloid aggregates occur upon irradiation of the plasmonic nanoparticles, allowing the development of emerging strategies to alter the structure of amyloid fibrils.


Assuntos
Amiloide , Nanopartículas Metálicas , Amiloide/química , Insulina/química , Ouro/química , Proteínas Amiloidogênicas
10.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982271

RESUMO

The kidneys are one of the main end organs targeted by hypertensive disease. Although the central role of the kidneys in the regulation of high blood pressure has been long recognized, the detailed mechanisms behind the pathophysiology of renal damage in hypertension remain a matter of investigation. Early renal biochemical alterations due to salt-induced hypertension in Dahl/salt-sensitive rats were monitored by Fourier-Transform Infrared (FTIR) micro-imaging. Furthermore, FTIR was used to investigate the effects of proANP31-67, a linear fragment of pro-atrial natriuretic peptide, on the renal tissue of hypertensive rats. Different hypertension-induced alterations were detected in the renal parenchyma and blood vessels by the combination of FTIR imaging and principal component analysis on specific spectral regions. Changes in amino acids and protein contents observed in renal blood vessels were independent of altered lipid, carbohydrate, and glycoprotein contents in the renal parenchyma. FTIR micro-imaging was found to be a reliable tool for monitoring the remarkable heterogeneity of kidney tissue and its hypertension-induced alterations. In addition, FTIR detected a significant reduction in these hypertension-induced alterations in the kidneys of proANP31-67-treated rats, further indicating the high sensitivity of this cutting-edge imaging modality and the beneficial effects of this novel medication on the kidneys.


Assuntos
Hipertensão , Ratos , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Pressão Sanguínea , Ratos Endogâmicos Dahl , Hipertensão/diagnóstico por imagem , Hipertensão/tratamento farmacológico , Hipertensão/induzido quimicamente , Rim/metabolismo
11.
Life (Basel) ; 12(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35455063

RESUMO

The multi-scale dynamics of aqueous solutions of the hydrophilic peptide N-acetyl-glycine-methylamide (NAGMA) have been investigated through extended frequency-range depolarized light scattering (EDLS), which enables the broad-band detection of collective polarizability anisotropy fluctuations. The results have been compared to those obtained for N-acetyl-leucinemethylamide (NALMA), an amphiphilic peptide which shares with NAGMA the same polar backbone, but also contains an apolar group. Our study indicates that the two model peptides induce similar effects on the fast translational dynamics of surrounding water. Both systems slow down the mobility of solvating water molecules by a factor 6-8, with respect to the bulk. Moreover, the two peptides cause a comparable far-reaching spatial perturbation extending to more than two hydration layers in diluted conditions. The observed concentration dependence of the hydration number is explained considering the random superposition of different hydration shells, while no indication of solute aggregation phenomena has been found. The results indicate that the effect on the dynamics of water solvating the amphiphilic peptide is dominated by the hydrophilic backbone. The minor impact of the hydrophobic moiety on hydration features is consistent with structural findings derived by Fourier transform infrared (FTIR) measurements, performed in attenuated total reflectance (ATR) configuration. Additionally, we give evidence that, for both systems, the relaxation mode in the GHz frequency range probed by EDLS is related to solute rotational dynamics. The rotation of NALMA occurs at higher timescales, with respect to the rotation of NAGMA; both processes are significantly slower than the structural dynamics of hydration water, suggesting that solute and solvent motions are uncoupled. Finally, our results do not indicate the presence of super-slow water (relaxation times in the order of tens of picoseconds) around the peptides investigated.

12.
Sci Rep ; 12(1): 3440, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236899

RESUMO

The pathophysiology of heart failure with preserved ejection fraction (HFpEF) is a matter of investigation and its diagnosis remains challenging. Although the mechanisms that are responsible for the development of HFpEF are not fully understood, it is well known that nearly 80% of patients with HFpEF have concomitant hypertension. We investigated whether early biochemical alterations were detectable during HFpEF progression in salt-induced hypertensive rats, using Fourier-transformed infrared (FTIR) and Raman spectroscopic techniques as a new diagnostic approach. Greater protein content and, specifically, greater collagen deposition were observed in the left atrium and right ventricle of hypertensive rats, together with altered metabolism of myocytes. Additionally, Raman spectra indicated a conformational change, or different degree of phosphorylation/methylation, in tyrosine-rich proteins. A correlation was found between tyrosine content and cardiac fibrosis of both right and left ventricles. Microcalcifications were detected in the left and right atria of control animals, with a progressive augmentation from six to 22 weeks. A further increase occurred in the left ventricle and right atrium of 22-week salt-fed animals, and a positive correlation was shown between the mineral deposits and the cardiac size of the left ventricle. Overall, FTIR and Raman techniques proved to be sensitive to early biochemical changes in HFpEF and preceded clinical humoral and imaging markers.


Assuntos
Insuficiência Cardíaca , Hipertensão , Animais , Insuficiência Cardíaca/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Humanos , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier , Volume Sistólico/fisiologia , Tirosina
13.
J Exp Zool A Ecol Integr Physiol ; 337(4): 303-315, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34914858

RESUMO

The study of phenotypic variation within species in response to different environments is a central issue in evolutionary and ecological physiology. Particularly, ambient temperature is one of the most important factors modulating interactions between animals and their environment. Phyllotis xanthopygus, a small Andean rodent, exhibits intraspecific differences along an altitudinal gradient in traits relevant to energy balance that persist after acclimation to common experimental temperatures. Therefore, we aim to explore geographic variations in energetic traits of P. xanthopygus and to assess the contribution of phenotypic plasticity to population differences. We compared metabolic rate and thermal conductance in response to different acclimation temperatures in animals collected at distinct altitudes (F0 generation) and in their offspring, born and raised under common-garden conditions (F1 generation). We found intraspecific differences in resting metabolic rate (RMR) of animals collected at different altitudes that were no longer evident in the F1 generation. Furthermore, although both generations showed the same pattern of RMR flexibility in response to acclimation temperature, its magnitude was lower for the F1 individuals. This suggests that developmental conditions affect the short-term acclimation capacity of this trait during adulthood. On the other hand, thermal conductance (C) showed irreversible plasticity, as animals raised in the laboratory at stable warm conditions had a relatively higher C than the animals from the field, showing no adjustments to thermal acclimation during adulthood in either group. In sum, our results support the hypothesis that the developmental environment shapes energetic traits, emphasizing the relevance of incorporating ontogeny in physiological studies.


Assuntos
Aclimatação , Roedores , Aclimatação/fisiologia , Adaptação Fisiológica , Animais , Metabolismo Basal/fisiologia , Metabolismo Energético
14.
Life (Basel) ; 11(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34685367

RESUMO

We combined broad-band depolarized light scattering and infrared spectroscopies to study the properties of hydration water in a lysozyme-trehalose aqueous solution, where trehalose is present above the concentration threshold (30% in weight) relevant for biopreservation. The joint use of the two different techniques, which were sensitive to inter-and intra-molecular degrees of freedom, shed new light on the molecular mechanism underlying the interaction between the three species in the mixture. Thanks to the comparison with the binary solution cases, we were able to show that, under the investigated conditions, the protein, through preferential hydration, remains strongly hydrated even in the ternary mixture. This supported the water entrapment scenario, for which a certain amount of water between protein and sugar protects the biomolecule from damage caused by external agents.

15.
Materials (Basel) ; 14(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576507

RESUMO

CeO2 nanoparticles were coated with polydopamine (PDA) by dopamine polymerization in water dispersions of CeO2 and characterized by Infrared and Near Edge X-ray Absorption Fine Structure spectroscopy, Transmission Electron Microscopy, Thermogravimetric analysis and X-ray diffraction. The resulting materials (PDAx@CeO2, with x = PDA wt% = 10, 25, 50) were employed as fillers of composite proton exchange membranes with Aquivion 830 as ionomer, to reduce the ionomer chemical degradation due to hydroxyl and hydroperoxyl radicals. Membranes, loaded with 3 and 5 wt% PDAx@CeO2, were prepared by solution casting and characterized by conductivity measurements at 80 and 110 °C, with relative humidity ranging from 50 to 90%, by accelerated ex situ degradation tests with the Fenton reagent, as well as by in situ open circuit voltage stress tests. In comparison with bare CeO2, the PDA coated filler mitigates the conductivity drop occurring at increasing CeO2 loading especially at 110 °C and 50% relative humidity but does not alter the radical scavenger efficiency of bare CeO2 for loadings up to 4 wt%. Fluoride emission rate data arising from the composite membrane degradation are in agreement with the corresponding changes in membrane mass and conductivity.

16.
J Colloid Interface Sci ; 604: 705-718, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34280768

RESUMO

HYPOTHESES: Additives are commonly used to tune macromolecular conformational transitions. Among additives, trehalose is an excellent bioprotectant and among responsive polymers, PNIPAM is the most studied material. Nevertheless, their interaction mechanism so far has only been hinted without direct investigation, and, crucially, never elucidated in comparison to proteins. Detailed insights would help understand to what extent PNIPAM microgels can effectively be used as synthetic biomimetic materials, to reproduce and study, at the colloidal scale, isolated protein behavior and its sensitivity to interactions with specific cosolvents or cosolutes. EXPERIMENTS: The effect of trehalose on the swelling behavior of PNIPAM microgels was monitored by dynamic light scattering; Raman spectroscopy and molecular dynamics simulations were used to explore changes of solvation and dynamics across the swelling-deswelling transition at the molecular scale. FINDINGS: Strongly hydrated trehalose molecules develop water-mediated interactions with PNIPAM microgels, thereby preserving polymer hydration below and above the transition while drastically inhibiting local motions of the polymer and of its hydration shell. Our study, for the first time, demonstrates that slowdown of dynamics and preferential exclusion are the principal mechanisms governing trehalose effect on PNIPAM microgels, at odds with preferential adsorption of alcohols, but in full analogy with the behavior observed in trehalose-protein systems.


Assuntos
Microgéis , Resinas Acrílicas , Trealose , Água
17.
J Exp Biol ; 224(14)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34160050

RESUMO

The predicted rise of global temperatures is of major concern for ectotherms because of its direct impact on their behavior and physiology. As physiological performance mediates a species' resilience to warming exposure, physiological plasticity could greatly reduce the susceptibility to climate change. We studied the degree to which Diplolaemus leopardinus lizards are able to adjust behavioral and physiological traits in response to short periods of temperature change. We used a split cross design to measure the acclimation response of preferred body temperature (Tp), and the thermal performance curve of resting metabolic rate (RMR) and evaporative water loss (EWL). Our results showed that plasticity differs among traits: whereas Tp and EWL showed lower values in warm conditions, the body temperature at which RMR was highest increased. Moreover, RMR was affected by thermal history, showing a large increase in response to cold exposure in the group initially acclimated to warm temperatures. The reduction of EWL and the increase in optimal temperature will give lizards the potential to partially mitigate the impact of rising temperatures in the energy cost and water balance. However, the decrease in Tp and the sensitivity to the warm thermal history of RMR could be detrimental to the energy net gain, increasing the species' vulnerability, especially considering the increase of heat waves predicted for the next 50 years. The integration of acclimation responses in behavioral and physiological traits provides a better understanding of the range of possible responses of lizards to cope with the upcoming climatic and environmental modifications expected as a result of climate change.


Assuntos
Iguanas , Lagartos , Panthera , Aclimatação , Animais , Argentina , Mudança Climática , Temperatura
18.
Biomacromolecules ; 22(3): 1147-1158, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33600168

RESUMO

A method is designed to quickly form protein hydrogels, based on the self-assembly of highly concentrated lysozyme solutions in acidic conditions. Their properties can be easily modulated by selecting the curing temperature. Molecular insights on the gelation pathway, derived by in situ FTIR spectroscopy, are related to calorimetric and rheological results, providing a consistent picture on structure-property correlations. In these self-crowded samples, the thermal unfolding induces the rapid formation of amyloid aggregates, leading to temperature-dependent quasi-stationary levels of antiparallel cross ß-sheet links, attributed to kinetically trapped oligomers. Upon subsequent cooling, thermoreversible hydrogels develop by the formation of interoligomer contacts. Through heating/cooling cycles, the starting solutions can be largely recovered back, due to oligomer-to-monomer dissociation and refolding. Overall, transparent protein hydrogels can be easily formed in self-crowding conditions and their properties explained, considering the formation of interconnected amyloid oligomers. This type of biomaterial might be relevant in different fields, along with analogous systems of a fibrillar nature more commonly considered.


Assuntos
Hidrogéis , Muramidase , Amiloide , Proteínas Amiloidogênicas , Temperatura
19.
Int J Biol Macromol ; 177: 40-47, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33607130

RESUMO

Materials based on ordered protein aggregates have recently received a lot of attention for their application as drug carriers, due to their biocompatibility and their ability to sequester many biological fluids. Bovine serum albumin (BSA) is a good candidate for this use due to its high availability and tendency to aggregate and gel under acidic conditions. In the present work, we employ spectroscopic techniques to investigate the heat-induced BSA aggregation at the molecular scale, in the 12-84 °C temperature range, at pH = 5 where two different isoforms of the protein are stable. Samples at low and high protein concentration are examined. With the advantage of the combined use of FTIR and CD, we recognize the aggregation-prone species and the different distribution of secondary structures, conformational rearrangements and types of aggregates, of millimolar compared to micromolar BSA solutions. Further, as a new tool, we use the Maximum Entropy Method to fit the kinetic curves to investigate the distribution of kinetic constants of the complex hierarchical aggregation process. Finally, we characterize the activation energy of the initial self-assembling step to observe that the formation of both small and large aggregates is driven by the same interactions.


Assuntos
Soroalbumina Bovina/química , Temperatura Alta , Ponto Isoelétrico , Cinética , Agregados Proteicos/fisiologia , Estrutura Secundária de Proteína/fisiologia , Análise Espectral/métodos
20.
J Proteomics ; 228: 103927, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32768606

RESUMO

Osteochondrosis is a developmental orthopedic disease affecting growing cartilage in young horses. In this study we compared the proteomes of equine chondrocytes obtained from healthy and osteochondrotic cartilage using a label-free mass spectrometry approach. Quantitative changes of some proteins selected for their involvement in different functional pathways highlighted by the bioinformatics analysis, were validated by western blotting, while biochemical alterations of extracellular matrix were confirmed via Raman spectroscopy analysis. In total 1637 proteins were identified, of which 59 were differentially abundant. Overall, the results highlighted differentially represented proteins involved in metabolic and functional pathways that may be related to the failure of the endochondral ossification process occurring in osteochondrosis. In particular, we identified proteins involved in extracellular matrix degradation and organization, vitamin metabolism, osteoblast differentiation, apoptosis, protein folding and localization, signalling and gene expression modulation and lysosomal activities. These results provide valuable new insights to elucidate the underlying molecular mechanisms associated with the development and progression of osteochondrosis. SIGNIFICANCE: Osteochondrosis is a common articular disorder in young horses mainly due to defects in endochondral ossification. The pathogenesis of osteochondrosis is still poorly understood and only a limited number of proteomic studies have been conducted. This study provides a comprehensive characterization of proteomic alterations occurring in equine osteochondrotic chondrocytes, the only resident cell type that modulates differentiation and maturation of articular cartilage. The results evidenced alterations in abundance of proteins involved in functional and metabolic pathways and in extracellular matrix remodelling. These findings could help clarify some molecular aspects of osteochondrosis and open new fields of research for elucidating the pathogenesis of this disease.


Assuntos
Cartilagem Articular , Osteocondrose , Animais , Condrócitos , Cavalos , Osteocondrose/veterinária , Proteoma , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...