Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(12): 3566-3574, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38316144

RESUMO

Membrane pores are exploited for the stochastic sensing of various analytes, and here, we use electrical recordings to explore the interaction of PEGylated peptides of different sizes with a protein pore, CymA. This wide-diameter natural pore comprises densely filled charged residues, facilitating electrophoretic binding of polyethylene glycol (PEG) tagged with a nonaarginine peptide. The small PEG 200 peptide conjugates produced monodisperse blockages and exhibited voltage-dependent translocation across the pores. Notably, the larger PEG 1000 and 2000 peptide conjugates yielded heterogeneous blockages, indicating a multitude of PEG conformations hindering their translocation through the pore. Furthermore, a much larger PEG 5000 peptide occludes the pore entrance, resulting in complete closure. The competitive binding of different PEGylated peptides with the same pore produced specific blockage signals reflecting their identity, size, and conformation. Our proposed model of sensing distinct polypeptide conformations corresponds to disordered protein unfolding, suggesting that this pore can find applications in proteomics.


Assuntos
Nanoporos , Peptídeos/química , Conformação Molecular , Polietilenoglicóis/química
2.
Chem Asian J ; 17(24): e202200891, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36325993

RESUMO

Naturally-occurring membrane proteins have been engineered as nanopore sensors for the single-molecule detection of various biochemical molecules. Here, we present a natural bacterial porin, CymA containing a dynamic component and densely packed charged residues in the pore, shaping a unique structural conformation and charge feature. Using single-channel recordings, we investigated the translocation of charged polypeptides through native CymA and truncated CymA lacking the dynamic element. Cationic polypeptides bind to the pore with high affinity, specifically at low salt conditions indicating an electrostatic charge and voltage-dependent translocation. Anionic peptides did not bind to the pore, confirming the selective binding of polypeptides with the pore due to their specific charge distribution. Further, the distinct peptide translocation kinetics between native and truncated indicated the role of the dynamic segment in molecular transport. We suggest that these natural membrane pores that permit the selective translocation of cationic polypeptides are advantageous for nanopore proteomics applications.


Assuntos
Proteínas de Membrana , Nanoporos , Eletricidade Estática , Peptídeos/química , Cinética , Cátions
3.
ACS Sens ; 7(6): 1766-1776, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35671512

RESUMO

The selective translocation of molecules through membrane pores is an integral process in cells. We present a bacterial sugar transporter, CymA of unusual structural conformation due to a dynamic N terminus segment in the pore, reducing its diameter. We quantified the translocation kinetics of various cyclic sugars of different charge, size, and symmetry across native and truncated CymA devoid of the N terminus using single-channel recordings. The chemically divergent cyclic hexasaccharides bind to the native and truncated pore with high affinity and translocate effectively. Specifically, these sugars bind and translocate rapidly through truncated CymA compared to native CymA. In contrast, larger cyclic heptasaccharides and octasaccharides do not translocate but bind to native and truncated CymA with distinct binding kinetics highlighting the importance of molecular charge, size and symmetry in translocation consistent with liposome assays. Based on the sugar-binding kinetics, we suggest that the N terminus most likely resides inside the native CymA barrel, regulating the transport rate of cyclic sugars. Finally, we present native CymA as a large nanopore sensor for the simultaneous single-molecule detection of various sugars at high resolution, establishing its functional versatility. This natural pore is expected to have several applications in nanobiotechnology and will help further our understanding of the fundamental mechanism of molecular transport.


Assuntos
Nanoporos , Açúcares , Transporte Biológico , Cinética
4.
ACS Nano ; 14(2): 2285-2295, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31976649

RESUMO

Membrane protein pores have demonstrated applications in nanobiotechnology and single-molecule chemistry for effective detection of biomolecules. Here, we define the molecular basis of carbohydrate polymers translocation through a substrate-specific bacterial nanopore, CymA, which has a 15-residue N terminus segment inside the pore, restricting its diameter. Using single-channel recordings, we determined the kinetics of cationic cyclic oligosaccharide binding and elucidated the translocation mechanism across the pore in real-time. The cationic cyclic hexasaccharide binds to the densely packed negatively charged residues at the extracellular side of the pore with high affinity, facilitating its entry into the pore driven by the applied voltage. Further, the dissociation rate constant increased with increasing voltages, indicating unidirectional translocation toward the pore exit. Specifically, a larger cationic cyclic octasaccharide rapidly blocked the pore more effectively, resulting in the complete closure of the pore with increasing voltage, implying only strong binding. Further, we show that uncharged oligosaccharides exclusively bind to the extracellular side of the pore and the electroosmotic flow most likely drives their translocation. We propose that CymA favors selective translocation of cyclic hexasaccharide and linear maltooligosaccharides due to an asymmetrical charge pattern and the N terminus that regulates the substrate transport. We suggest that this substrate-specific nanopore with sophisticated geometry will be useful for complex biopolymer characterization.


Assuntos
Proteínas de Bactérias/metabolismo , Klebsiella oxytoca/química , Nanoporos , Proteínas de Bactérias/química , Modelos Moleculares , Tamanho da Partícula , Especificidade por Substrato , Propriedades de Superfície
5.
J Am Chem Soc ; 141(7): 2949-2959, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30702873

RESUMO

The porinACj is an α-helical porin that spans the mycolic acid outer membrane of Gram-positive mycolate, Corynebacterium jeikeium. Here, we report that a 40-amino acid, synthetic peptide, pPorA corresponding to porin PorACj, inserts into the lipid bilayers and forms well-defined pores. By electrical recordings, we measured the single-channel properties that revealed the autonomous assembly of large conductance ion-selective synthetic pores. Further, we characterized the functional properties by blocking the peptide pores by cyclodextrins of different charge and symmetry. We deduced the subunit stoichiometry and putative structure of the pore by site-specific chemical modification in single-channel electrical recordings and gel electrophoresis. On the basis of these findings, we suggest that this is a large functional uniform transmembrane pore built entirely from short synthetic α-helical peptides. Accordingly, we propose a model demonstrating structural assembly of large α-helix-based peptide pores for understanding the action of antimicrobial peptides and for the design of pores with applications in biotechnology.


Assuntos
Peptídeos/química , Porinas/química , Sequência de Aminoácidos , Corynebacterium/química , Ciclodextrinas/metabolismo , Cisteína/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Peptídeos/metabolismo , Porinas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Estrutura Quaternária de Proteína
6.
Small ; 14(32): e1801192, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30009552

RESUMO

Controlling the molecular interactions through protein nanopores is crucial for effectively detecting single molecules. Here, the development of a hetero-oligomeric nanopore derived from Nocardia farcinica porin AB (NfpAB) is discussed for single-molecule sensing of biopolymers. Using single-channel recording, the interaction of cyclic oligosaccharides such as cationic cyclodextrins (CDs) of different symmetries and charges with NfpAB is measured. Studies of the transport kinetics of CDs reveal asymmetric geometry and charge distribution of NfpAB. The applied potential promotes the attachment of the cationic CDs to the negatively charged pore surface due to electrostatic interaction. Further, the attached CDs are released from the pore by reversing the applied potential in time-resolved blockages. Release of CDs from the pore depends on its charge, size, and magnitude of the applied potential. The kinetics of CD attachment and release is controlled by fine-tuning the applied potential demonstrating the successful molecular transport across these nanopores. It is suggested that such controlled molecular interactions with protein nanopores using organic templates can be useful for several applications in nanopore technology and single-molecule chemistry.


Assuntos
Nanoporos , Oligossacarídeos/química , Proteínas de Bactérias/química , Cátions , Ciclodextrinas/química , Eletricidade , Cinética , Modelos Moleculares , Nocardia/química , Porinas/química , Espermina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...