Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; : 107542, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992436

RESUMO

Diamond Blackfan Anemia (DBA) is a rare macrocytic red blood cell aplasia that usually presents within the first year of life. The vast majority of patients carry a mutation in one of approximately 20 genes that results in ribosomal insufficiency with the most significant clinical manifestations being anemia and a predisposition to cancers. Nemo-like Kinase (NLK) is hyperactivated in the erythroid progenitors of DBA patients and inhibition of this kinase improves erythropoiesis, but how NLK contributes to the pathogenesis of the disease is unknown. Here we report that activated NLK suppresses the critical upregulation of mitochondrial biogenesis required in early erythropoiesis. During normal erythropoiesis, mTORC1 facilitates the translational upregulation of Transcription factor A, mitochondrial (TFAM) and Prohibin 2 (PHB2) to increase mitochondrial biogenesis. In our models of DBA, active NLK phosphorylates the regulatory component of mTORC1, thereby suppressing mTORC1 activity and preventing mTORC1-mediated TFAM and PHB2 upregulation and subsequent mitochondrial biogenesis. Improvement of erythropoiesis that accompanies NLK inhibition is negated when TFAM and PHB2 upregulation is prevented. These data demonstrate that a significant contribution of NLK on the pathogenesis of DBA is through loss of mitochondrial biogenesis.

2.
Curr Oncol Rep ; 26(3): 250-257, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38340217

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to summarize the most updated treatment recommendations for pediatric CML, and to discuss current areas of investigation. RECENT FINDINGS: There is new phase 1 data to support the safety of the non-ATP competitive tyrosine kinase inhibitor (TKI) asciminib in the pediatric cohort. Ongoing studies are investigating the role of treatment-free remission in children. Chronic phase CML in children is managed with lifelong TKI therapy; however, evidence of deeper remissions sustained with second-generation TKIs may permit shorter treatment courses. Use of more specific TKIs may mitigate some of the side effects specific to the pediatric cohort. Children with advanced phase CML should achieve a complete hematologic remission with use of a second-generation TKI prior to transplant to achieve the best outcome.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Criança , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/uso terapêutico
3.
J Biol Chem ; 297(3): 100988, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34298020

RESUMO

Nemo-like kinase (NLK) is a member of the mitogen-activated protein kinase family of kinases and shares a highly conserved kinase domain with other mitogen-activated protein kinase family members. The activation of NLK contributes to the pathogenesis of Diamond-Blackfan anemia (DBA), reducing c-myb expression and mechanistic target of rapamycin activity, and is therefore a potential therapeutic target. Unlike other anemias, the hematopoietic effects of DBA are largely restricted to the erythroid lineage. Mutations in ribosomal genes induce ribosomal insufficiency and reduced protein translation, dramatically impacting early erythropoiesis in the bone marrow of patients with DBA. We sought to identify compounds that suppress NLK and increases erythropoiesis in ribosomal insufficiency. We report that the active component of ginseng, ginsenoside Rb1, suppresses NLK expression and improves erythropoiesis in in vitro models of DBA. Ginsenoside Rb1-mediated suppression of NLK occurs through the upregulation of miR-208, which binds to the 3'-UTR of NLK mRNA and targets it for degradation. We also compare ginsenoside Rb1-mediated upregulation of miR-208 with metformin-mediated upregulation of miR-26. We conclude that targeting NLK expression through miRNA binding of the unique 3'-UTR is a viable alternative to the challenges of developing small-molecule inhibitors to target the highly conserved kinase domain of this specific kinase.


Assuntos
Anemia de Diamond-Blackfan/patologia , Eritropoese/efeitos dos fármacos , Ginsenosídeos/farmacologia , Panax/química , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Regiões 3' não Traduzidas , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...