Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 837369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529449

RESUMO

JAK1 plays a significant role in the intracellular signaling by interacting with cytokine receptors in different types of cells and is linked to the pathogenesis of various cancers and in the pathology of the immune system. In this study, ligand-based pharmacophore modeling combined with virtual screening and molecular docking methods was incorporated to identify the potent and selective lead compounds for JAK1. Initially, the ligand-based pharmacophore models were generated using a set of 52 JAK1 inhibitors named C-2 methyl/hydroxyethyl imidazopyrrolopyridines derivatives. Twenty-seven pharmacophore models with five and six pharmacophore features were generated and validated using potency and selectivity validation methods. During potency validation, the Guner-Henry score was calculated to check the accuracy of the generated models, whereas in selectivity validation, the pharmacophore models that are capable of identifying selective JAK1 inhibitors were evaluated. Based on the validation results, the best pharmacophore models ADHRRR, DDHRRR, DDRRR, DPRRR, DHRRR, ADRRR, DDHRR, and ADPRR were selected and taken for virtual screening against the Maybridge, Asinex, Chemdiv, Enamine, Lifechemicals, and Zinc database to identify the new molecules with novel scaffold that can bind to JAK1. A total of 4,265 hits were identified from screening and checked for acceptable drug-like properties. A total of 2,856 hits were selected after ADME predictions and taken for Glide molecular docking to assess the accurate binding modes of the lead candidates. Ninety molecules were shortlisted based on binding energy and H-bond interactions with the important residues of JAK1. The docking results were authenticated by calculating binding free energy for protein-ligand complexes using the MM-GBSA calculation and induced fit docking methods. Subsequently, the cross-docking approach was carried out to recognize the selective JAK1 lead compounds. Finally, top five lead compounds that were potent and selective against JAK1 were selected and validated using molecular dynamics simulation. Besides, the density functional theory study was also carried out for the selected leads. Through various computational studies, we observed good potency and selectivity of these lead compounds when compared with the drug ruxolitinib. Compounds such as T5923555 and T5923531 were found to be the best and can be further validated using in vitro and in vivo methods.

2.
Cell Biol Int ; 46(5): 771-791, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35077598

RESUMO

Human health may benefit from the study of natural compounds and phytoconstituents that can protect from inflammation. We investigated Nimbin (N1), a member of the ring C Seco-tetranortriterpenoids family, and its semi-natural analog deacetyl Nimbin namely N2 and N3 for their anti-inflammatory properties. As key findings, N1, N2, and N3 were able to improve wound healing by cell proliferation in a period of 24 h and were able to reduce the reactive oxygen species (ROS) production in Madin-Darby Canine Kidney cells which were screened using dichloro-dihydro fluorescein diacetate (DCF-DA) staining. When the zebrafish larvae were subjected to DCF-DA assay N1, N2, and N3 were able to substantially reduce the ROS levels in a dose-dependent manner. In zebrafish larvae, the cell death indicates the fluorescent intensity due to acridine orange staining that was found to be dramatically decreasing upon the treatment of N1, N2, and N3. The cell membrane lipid peroxidation levels were also reduced in a dose-dependent manner upon the treatment of Nimbin and its analogs indicating lesser blue fluorescent levels. Among the Nimbin and its analogs, N2 was subjected to have better activity. To confirm the activity of N1, N2, and N3, in silico characterization was performed using Density functional theory and molecular docking. As a result, N2 exhibited the lowest electronegative value and highest binding energy when docked with anti-inflammatory and antioxidant proteins CAT, COX, GP, IL-1, and MPO. Furthermore, the therapeutic potential of N2 must be explored at the molecular level as well as in clinical studies for the treatment of inflammation-associated diseases.


Assuntos
Terapias Complementares , Limoninas , Animais , Anti-Inflamatórios/farmacologia , Cães , Domesticação , Inflamação/tratamento farmacológico , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...