Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 725, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851636

RESUMO

Exposure to UV affects the development and growth of a wide range of organisms. Nowadays, researchers are focusing on the impact of UV radiation and its underlying molecular mechanisms, as well as devising strategies to mitigate its harmful effects. Different forms of UV radiation, their typical exposure effects, the impact of UV on DNA integrity, and the deterioration of genetic material are discussed in this review; furthermore, we also review the effects of UV radiation that affect the biological functions of the organisms. Subsequently, we address the processes that aid organisms in navigating the damage in genetic material, neuroinflammation, and neurodegeneration brought on by UV-mediated double-strand breaks. To emphasize the molecular pathways, we conclude the review by going over the animal model studies that highlight the genes and proteins that are impacted by UV radiation.


Assuntos
Quebras de DNA de Cadeia Dupla , Doenças Neurodegenerativas , Doenças Neuroinflamatórias , Raios Ultravioleta , Raios Ultravioleta/efeitos adversos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/genética , Animais , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Humanos , Doenças Neuroinflamatórias/etiologia , Reparo do DNA/genética , Dano ao DNA/efeitos da radiação
2.
In Vitro Cell Dev Biol Anim ; 59(6): 467-478, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37468693

RESUMO

Developing blood vessels from the existing vasculature is vital for the growth of the organism, as well as for systematic wound healing and the repair process. In this study, we investigated the role of angiogenesis during the regeneration process in the earthworm, Eudrilus eugeniae, animal model. Briefly, the morphological examination of blood vessels in juvenile and mature worms is documented, along with the development of new blood vessels in regenerating blastema. However, in vivo and in vitro experiments with juvenile worms revealed that geraniol retards blastemal regeneration growth with undeveloped blood vessels, as compared to the control. The results of qRT-PCR, western blotting, and immunohistochemistry confirmed a reduced expression of VEGFR2 and WNT5A in the day 3 regenerating blastema of geraniol-treated worms, as compared to the control. We conclude that geraniol acts as a potent natural inhibitor of angiogenesis, thereby retarding the regeneration process in earthworms. In addition, for studying angiogenesis and screening effective angiogenesis inhibitors as drug candidates, the earthworm is an ambient animal model system.


Assuntos
Oligoquetos , Animais , Oligoquetos/genética , Oligoquetos/química , Oligoquetos/metabolismo , Imuno-Histoquímica
3.
Biosensors (Basel) ; 13(6)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37367028

RESUMO

Biosensors are devices that quantify biologically significant information required for diverse applications, such as disease diagnosis, food safety, drug discovery and detection of environmental pollutants. Recent advancements in microfluidics, nanotechnology and electronics have led to the development of novel implantable and wearable biosensors for the expedient monitoring of diseases such as diabetes, glaucoma and cancer. Glaucoma is an ocular disease which ranks as the second leading cause for loss of vision. It is characterized by the increase in intraocular pressure (IOP) in human eyes, which results in irreversible blindness. Currently, the reduction of IOP is the only treatment used to manage glaucoma. However, the success rate of medicines used to treat glaucoma is quite minimal due to their curbed bioavailability and reduced therapeutic efficacy. The drugs must pass through various barriers to reach the intraocular space, which in turn serves as a major challenge in glaucoma treatment. Rapid progress has been observed in nano-drug delivery systems for the early diagnosis and prompt therapy of ocular diseases. This review gives a deep insight into the current advancements in the field of nanotechnology for detecting and treating glaucoma, as well as for the continuous monitoring of IOP. Various nanotechnology-based achievements, such as nanoparticle/nanofiber-based contact lenses and biosensors that can efficiently monitor IOP for the efficient detection of glaucoma, are also discussed.


Assuntos
Glaucoma , Pressão Intraocular , Humanos , Glaucoma/diagnóstico , Glaucoma/tratamento farmacológico , Tonometria Ocular/métodos , Nanotecnologia , Próteses e Implantes
4.
Polymers (Basel) ; 15(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36987134

RESUMO

Here, a simple one-step hydrothermal-assisted carbonization process was adopted for the preparation of nitrogen/phosphorous-doped carbon dots from a water-soluble polymer, poly 2-(methacryloyloxy)ethyl phosphorylcholine (PMPC). By the free-radical polymerization method, PMPC was synthesized using 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) and 4,4'-azobis (4-cyanovaleric acid). The water-soluble polymers, PMPC, that have nitrogen/phosphorus moieties are used to prepare carbon dots (P-CDs). The resulting P-CDs were thoroughly characterized by various analytical techniques such as field emission-scanning electron microscopy (FESEM) with energy-dispersive X-ray spectroscopy (EDS), high-resolution transmittance electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Ultraviolet-visible (UV-vis) spectroscopy and fluorescence spectroscopy to determine their structural and optical properties. The synthesized P-CDs displayed bright/durable fluorescence, were stable for long periods, and confirmed the enrichment of functionalities including oxygen, phosphorus, and nitrogen heteroatoms in the carbon matrix. Since the synthesized P-CDs showed bright fluorescence with excellent photostability, excitation-dependent fluorescence emission, and excellent quantum yield (23%), it has been explored as a fluorescent (security) ink for drawing and writing (anti-counterfeiting). Further, cytotoxicity study results advised for biocompatibility and thus were used for cellular multicolor imaging in nematodes. This work not only demonstrated the preparation of CDs from polymers that can be used as advanced fluorescence ink, a bioimaging agent for anti-counterfeiting, and cellular multicolor imaging candidate, but additionally prominently opened a new perspective on the bulk preparation of CDs simply and efficiently for various applications.

5.
Polymers (Basel) ; 15(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36904445

RESUMO

Diabetic wounds are one of the serious, non-healing, chronic health issues faced by individuals suffering from diabetic mellitus. The distinct phases of wound healing are either prolonged or obstructed, resulting in the improper healing of diabetic wounds. These injuries require persistent wound care and appropriate treatment to prevent deleterious effects such as lower limb amputation. Although there are several treatment strategies, diabetic wounds continue to be a major threat for healthcare professionals and patients. The different types of diabetic wound dressings that are currently used differ in their properties of absorbing wound exudates and may also cause maceration to surrounding tissues. Current research is focused on developing novel wound dressings incorporated with biological agents that aid in a faster rate of wound closure. An ideal wound dressing material must absorb wound exudates, aid in the appropriate exchange of gas, and protect from microbial infections. It must support the synthesis of biochemical mediators such as cytokines, and growth factors that are crucial for faster healing of wounds. This review highlights the recent advances in polymeric biomaterial-based wound dressings, novel therapeutic regimes, and their efficacy in treating diabetic wounds. The role of polymeric wound dressings loaded with bioactive compounds, and their in vitro and in vivo performance in diabetic wound treatment are also reviewed.

6.
Pharmaceutics ; 15(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36839684

RESUMO

Human placenta is loaded with an enormous amount of endogenous growth factors, thereby making it a superior biomaterial for tissue regeneration. Sericin is a naturally occurring silk protein that is extensively used for biomedical applications. In the present work, sericin and human placenta-derived extracellular matrix were blended and fabricated in the form of scaffolds using the freeze-drying method for cutaneous wound treatment. The prepared sericin/placenta-derived extracellular matrix (SPEM) scaffolds were characterized to determine their morphology, functional groups, mechanical strength, and antibacterial activity. Scanning electron microscopic analysis of the scaffolds showed smooth surfaces with interconnected pores. In vitro MTT and scratch wound assays performed using HaCaT cells proved the non-toxic and wound-healing efficacy of SPEM scaffolds. In vivo CAM assay using fertilized chick embryos proved the angiogenic potency of the scaffolds. Animal experiments using Wistar albino rats proved that the open excision wounds treated with SPEM scaffolds significantly reduced wound size with collagen deposition. These results confirm that SPEM scaffolds can serve as a promising biomaterial for tissue regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...