Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 249(3): 739-749, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30374914

RESUMO

MAIN CONCLUSION: The level of resistance induced in different tomato genotypes after ß-CRY treatment correlated with the upregulation of defence genes, but not sterol binding and involved ethylene and jasmonic acid signalling. Elicitins, a family of small proteins secreted by Phytophthora and Pythium spp., are the most well-known microbe-associated molecular patterns of oomycetes, a lineage of fungus-like organisms that include many economically significant crop pathogens. The responses of tomato plants to elicitin INF1 produced by Phytophthora infestans have been studied extensively. Here, we present studies on the responses of three tomato genotypes to ß-cryptogein (ß-CRY), a potent elicitin secreted by Phytophthora cryptogea that induces hypersensitive response (HR) cell death in tobacco plants and confers greater resistance to oomycete infection than acidic elicitins like INF1. We also studied ß-CRY mutants impaired in sterol binding (Val84Phe) and interaction with the binding site on tobacco plasma membrane (Leu41Phe), because sterol binding was suggested to be important in INF1-induced resistance. Treatment with ß-CRY or the Val84Phe mutant induced resistance to powdery mildew caused by the pathogen Pseudoidium neolycopersici, but not the HR cell death observed in tobacco and potato plants. The level of resistance induced in different tomato genotypes correlated with the upregulation of defence genes including defensins, ß-1,3-glucanases, heveins, chitinases, osmotins, and PR1 proteins. Treatment with the Leu41Phe mutant did not induce this upregulation, suggesting similar elicitin recognition in tomato and tobacco. However, here ß-CRY activated ethylene and jasmonic acid signalling, but not salicylic acid signalling, demonstrating that elicitins activate different downstream signalling processes in different plant species. This could potentially be exploited to enhance the resistance of Phytophthora-susceptible crops.


Assuntos
Ciclopentanos/metabolismo , Etilenos/metabolismo , Proteínas Fúngicas/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Solanum lycopersicum/metabolismo , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Phytophthora , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Pythium , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo
2.
Ann Bot ; 119(5): 829-840, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27660055

RESUMO

Background and Aims: Current strategies for increased crop protection of susceptible tomato plants against pathogen infections include treatment with synthetic chemicals, application of natural pathogen-derived compounds or transfer of resistance genes from wild tomato species within breeding programmes. In this study, a series of 45 genes potentially involved in defence mechanisms was retrieved from the genome sequence of inbred reference tomato cultivar Solanum lycopersicum 'Heinz 1706'. The aim of the study was to analyse expression of these selected genes in wild and cultivated tomato plants contrasting in resistance to the biotrophic pathogen Oidium neolycopersici , the causative agent of powdery mildew. Plants were treated either solely with potential resistance inducers or by inducers together with the pathogen. Methods: The resistance against O. neolycopersici infection as well as RT-PCR-based analysis of gene expression in response to the oomycete elicitor oligandrin and chemical agent ß-aminobutyric acid (BABA) were investigated in the highly susceptible domesticated inbred genotype Solanum lycopersicum 'Amateur' and resistant wild genotype Solanum habrochaites . Key Results: Differences in basal expression levels of defensins, germins, ß-1,3-glucanases, heveins, chitinases, osmotins and PR1 proteins in non-infected and non-elicited plants were observed between the highly resistant and susceptible genotypes. Moreover, these defence genes showed an extensive up-regulation following O. neolycopersici infection in both genotypes. Application of BABA and elicitin induced expression of multiple defence-related transcripts and, through different mechanisms, enhanced resistance against powdery mildew in the susceptible tomato genotype. Conclusions: The results indicate that non-specific resistance in the resistant genotype S. habrochaites resulted from high basal levels of transcripts with proven roles in defence processes. In the susceptible genotype S. lycopersicum 'Amateur', oligandrin- and BABA-induced resistance involved different signalling pathways, with BABA-treated leaves displaying direct activation of the ethylene-dependent signalling pathway, in contrast to previously reported jasmonic acid-mediated signalling for elicitins.


Assuntos
Aminobutiratos/farmacologia , Ascomicetos/fisiologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Sesquiterpenos/farmacologia , Solanum lycopersicum/genética , Solanum/genética , Resistência à Doença , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Solanum/imunologia , Solanum/microbiologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...